نتایج جستجو برای: تبدیل هیلبرت هوآنگ
تعداد نتایج: 35885 فیلتر نتایج به سال:
قاب های تعمیم یافته خصوصیاتی مشابه باقاب هادرفضاهای هیلبرت مختلط دارند،اماتمام خصوصیات ان ها مشابه نمی باشد.برخی ازنویسندگان تساوی ونامساوی هابرای قاب هاوقاب های دوگان را به ترتیب به تساوی ها ونامساوی هایی برای قاب های تعمیم یافته وقاب های تعمیم یافته دوگان درفضاهای هیلبرت تعمیم دادند.دراین پایان نامه بااستفاده از عملگرهای شبه معکوس چندتساوی ونامساوی جدیدبرای دنباله های بسل تعمیم یافته درفضاهای...
در فضاهای هیلبرت با بعد متناهی به ارتباط بین دو قاب پرداخته، همچنین معیاری برای تشخیص بعد یک فضای هیلبرت با استفاده از قابها ارائه می دهیم، به علاوه روشی برای ساخت یک قاب چسبان ایزومتریک برای $mathbb{c}^d$ یا $mathbb{r}^d$ معرفی می نماییم. در انتها سعی می کنیم قضایای مربوط به قابها و پارسوال قابها را به میدان برداری $mathbb{z}^n_2$ گسترش دهیم، اما با توجه به اینکه...
چکیده درهمتنیدگی یکی از مهمترین موضوعات در نظریه اطلاعات کوانتومی است. این پایان نامه به تولید حالت های درهمتنیده بل و ghz در نقاط کوانتومی نیمرساناها، به کمک برهمکنش مدهای کاواک با نقاط کوانتومی می پردازد
در این تئوری جدید از -c*جبرها فضاهایی که مدولهایی روی یک -c*جبرهستند یک نقش اساسی بعهده دارند. این فضاها، دارای ساختاری شبیه به یک حاصلضرب داخلی در یک فضای هیلبرت ، می باشند ولی بجای مقدار اسکالر مانند حالتی که فضا، فضای هیلبرت هست ، مقدارش در -c*جبر قرار می گیرد. این چنین فضاها دارای یک نرم طبیعی که مربوط به آنها می باشد هستند و اگر نسبت به این نرم کامل باشند هیلبرت -c*مدول نامیده می شوند. متع...
به بحث در مورد تفاضل تصاویر متعامد در فضای هیلبرت، وارون پذیری این تفاضل و این که با چه شرطی تفاضل دو تصویر متعامد در فضای هیلبرت عملگر فردهلم می باشد، می پردازد.
در این پایان نامه ، از چند نتیجه اساسی که قاب ها در فضای هیلبرت را توصیف می کند و خصوصیات عمومی قاب های فضای هیلبرت را در فضاهای باناخ کلی نشان می دهد استفاده می کنیم. از جمله اهداف ما این است که ، در ابتدا به مطالعه قاب ها و برخی خصوصیاتشان در فضاهای هیلبرت می پردازیم و نیز قاب های باناخ و ( xd- قابها ) را در فضاهای باناخ جدائی پذیر و رابطه آنها با سری های توسعه یافته در فضاهای باناخ را تشریح...
مفهوم فریم های گسسته، به یک خانواده شمارش پذیر از فضای هیلبرت اشاره دارد که قابلیت یک بسط محکم و نه الزاما یکتا را برای هر عضو از فضای هیلبرت، برحسب عناصر فریم، ایجاد می کند. فریم ها نقش مهمی را در ریاضیات محض و کاربردی بازی می کنند به طور مثال می توان به پردازش سیگنال ها و تصاویر، مخابرات، نظریه کد گذاری و ... اشاره کرد. در این پژوهش تلاش اصلی ما در راستای اصلوب بندی باناخ فریم ها و _فریم هاست...
مطالب اصلی این پایان نامه مشخص سازی فریم های پیوندی به کمک فریم ها در یک فضای هیلبرت می باشد. از آنجایی که فریم های پیوندی در فضای هیلبرت یک نوع خاص از فریم ها از عملگرها می باشد بنابراین در عمل مشخص سازی آنها کار دشواری است. در این پایان نامه ابتدا فریم های پیوندی بی رخنه که بوسیله تصاویر متعامد روی یک خانواده از زیر ففضاها تعریف شده اند را توسط یک خانواده از فر یم های برداری در زیر فضاهای مشخ...
در این رساله انواع مختلف قاب ها را در فضاهای هیلبرت و باناخ معرفی کرده و خواص آنها را بررسی می کنیم. ابتدا با الهام گرفتن از مفهوم $x_{d}$-قاب ها، $g-y_{v}$-قاب ها را در فضاهای باناخ معرفی کرده و عملگرهای ترکیب و تحلیل نظیر این قاب ها را با استفاده از مفهوم $eta$-دوگان بدست می آوریم. همچنین مفهوم قاب های $g$-باناخ را مطرح کرده و شرایط لازم و کافی برای وجود چنین قاب هایی را بدس...
فرض کنیم (hol(c حلقه ی توابع تامّ روی c باشد. همچنین فرض کنیم x یک فضای هیلبرت از توابع تامّ باشد. در این صورت، x را فضای هیلبرت تکثیری روی صفحه ی مختلط c می گوییم هرگاه در دو شرط زیر صدق کند: 1)حلقه ی چندجمله ای های c در x چگال باشد؛ 2)تابعک خطّی ارزیاب (e_? (f)=f(? برای هر ??c روی x پیوسته باشد. حال فرض کنیم f و g دو تابع تامّ باشند. در این صورت، می گوییم f?g هرگاه (جایی که m_1,m_2>0 s.t ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید