نتایج جستجو برای: الگوریتم شبکه عصبی مصنوعی آرتمپ فازی
تعداد نتایج: 72539 فیلتر نتایج به سال:
شبکههای عصبی فازی نوع-2 توانایی بالایی در شناسایی و کنترل سیستمهای غیرخطی، سیستمهای تغییرپذیر با زمان و نیز سیستمهای دارای نامعینی دارند. در این مقاله روش طراحی کنترلکننده معکوس تطبیقی عصبی فازی نوع-2 جهت کنترل برخط سیستمهای دینامیکی غیرخطی مورد بررسی قرار گرفته است. ابتدا ساختار کلاسی از شبکههای عصبی فازی نوع-2 بازهای مدل T-S نمایش داده میشود. این شبکه هفت لایه دارد که عملیات فازیساز...
پژوهش حاضر بر اساس ارزیابی الگوی یادگیری الگوریتم لورنبرگ مارکوات، گرادیان نزولی و الگوی آریما به مقایسه و توانایی پیشبینی کنندگی در بازار سرمایه میپردازد. بدین منظور دادههای بازار در سالهای 1394 تا 1397 مورد استفاده قرار گرفت و بیش از 75 درصد از این دادهها تا قبل از سال 1397 به عنوان دادههای آموزشی استفاده شد و دادههای یک سال پایانی نیز به عنوان دادههای آزمایشی مورد استفاده قرار گرفته ...
تخصیص بهینه منابع مالی یکی ازمهمترین مسا ئل بازار سرمایه است. در یک بازار سرمایه کارا از بعد عملیاتی ،سرمایه در اختیار بهترین گزینه های سرمایه گذاری قرار میگیرد. بنابراین استفاده ازابزارهای مدیریت مناسب جهت کسب بازدهی بیشتر،گامی در راستای کاراترشدن مدیریت معاملات بازاراست. با توجه به زمینه های استفاده از شبکه های عصبی و منطق فازی در سرمایه گذاری سهام و پیش بینی مالی ،بکارگیری آنها در ...
پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
یکی از مشکلات مهم در پیشبینی با شبکههای عصبی مصنوعی، فراهم کردن دادههای لازم برای پیشبینی است؛ چرا که شبکههای عصبی برای حصول نتایج دقیق نیاز به دادههای زیادی دارند. اما باید توجه داشت که جمعآوری دادههای مورد نیاز شبکه، نخست، بسیار هزینهبر است و دوم، مدت زمان طولانی را طلب میکند. بنابراین با توجه به تغییرات سریع در محیطهای واقعی و به ویژه سیستمهای اقتصادی و مالی، پیشبینی در اینگونه...
بیشتر آسیب پلها به دلیل آبشستگی اطراف پیهای آن در طول سیلاب هستند. بنابراین برای حداقلسازی احتمال خرابی، یک مدل بهبود یافته برای تخمین عمق آبشستگی اطراف آنها لازم است. به دلیل اینکه آبشستگی در پایههای پل یک تابع پیچیده از مشخصات مصالح کف، ویژگیهای سیال، مشخصات جریان و هندسهی پایه است، معادلات تجربی توانایی تخمین دقیق عمق آبشستگی را ندارند. در این تحقیق، روشی سودمند برای تخمین عمق آبشستگی...
یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گ...
همواره پیشبینی دقیق روند بازار سهام برای تصمیمگیریهای مالی سرمایهگذاران مهم بوده است. استفاده از مجموعهای از شاخصهای تحلیل تکنیکی یکی از پرکاربردترین روشهای پیشبینیهای مالی است. تعیین پارامترهای مناسب این شاخصها و همچنین ترکیب آنها یکی از چالشهای پژوهشگران است. از طرف دیگر، ماهیت غیرخطی و پویای تغییرات در روند بازار سهام موجب استفاده گسترده از روشهای پیشبینی غیرخطی همچون شبکه عصبی...
تبخیر و تعرق یکی از مهمترین عوامل اتلاف آب میباشد. تبخیر و تعرق یک پدیده پیچیدهای است که به عوامل و دادههای زیادی بستگی دارد، بنابراین برآورد دقیق میزان تبخیر و تعرق، بسیار مشکل و پرهزینه میباشد. هدف از این مطالعه برآورد تبخیر و تعرق با استفاده از الگوریتم توازن انرژی سطحی برای زمین (سبال) و همچنین ارزیابی عملکرد شبکههای عصبی مصنوعی در برآورد تبخیر و تعرق میباشد. جهت محاسبه میزان سبال ت...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید