نتایج جستجو برای: zero divisor graph ideal

تعداد نتایج: 424665  

Journal: :Arab Journal of Mathematical Sciences 2016

Journal: :caspian journal of mathematical sciences 2014
s. h. jafari

‎in this paper we give a characterization for all commutative‎ ‎rings with $1$ whose zero-divisor graphs are $c_4$-free.‎

2014
H. Y. Pourali V. V. Joshi B. N. Waphare

In this paper, we verify the diameter of zero divisor graphs with respect to direct product. Keywords—Atomic lattice, complement of graph, diameter, direct product of lattices, 0-distributive lattice, girth, product of graphs, prime ideal, zero divisor graph.

Journal: :algebraic structures and their applications 2015
a. mahmoodi

let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...

H. R. Maimani ,

For a commutative semigroup S with 0, the zero-divisor graph of S denoted by &Gamma(S) is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper we study median and center of this graph. Also we show that if Ass(S) has more than two elements, then the girth of &Gamma(S) is three.

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

Journal: :categories and general algebraic structures with applications 2015
ebrahim hashemi abdollah alhevaz eshag yoonesian

let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors.  the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero  zero-divisors of  $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...

Journal: :journal of algebra and related topics 0
p. karimi beiranvand islamic azad university, khorramabad branch, khorramabad r. beyranvand lorestan university

for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...

Journal: :iranian journal of mathematical chemistry 2011
m. r. ahmadi r. jahani-nezhad

let r be a commutative ring and (r) be its zerodivisor graph. in this article, we studywiener index and energy of γ(zn ) where n = pq or n = p2q and p, q are primes. a matlabcode for our calculations is also presented.

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید