نتایج جستجو برای: weakly amenable

تعداد نتایج: 58298  

J Laali, S.M Mohammadi,

Let S be a semigroup with a left multiplier  on S. A new product on S is defined by  related to S and  such that S and the new semigroup ST have the same underlying set as S. It is shown that if  is injective then where, is the extension of  on  Also, we show that if  is bijective then is amenable if and only if is so. Moreover, if  S completely regular, then is weakly amenable. 

Journal: :Proceedings of the American Mathematical Society 1993

Journal: :bulletin of the iranian mathematical society 2011
g. esslamzadeh m. shadab

we study topological von neumann regularity and principal von neumann regularity of banach algebras. our main objective is comparing these two types of banach algebras and some other known banach algebras with one another. in particular, we show that the class of topologically von neumann regular banach algebras contains all $c^*$-algebras, group algebras of compact abelian groups and cer...

Journal: :Journal of Functional Analysis 2013

G. Esslamzadeh M. Shadab

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

2008
EBRAHIM SAMEI

Let Lω(G) be a Beurling algebra on a locally compact abelian group G. We look for general conditions on the weight which allows the vanishing of continuous derivations of Lω(G). This leads us to introducing vector-valued Beurling algebras and considering the translation of operators on them. This is then used to connect the augmentation ideal to the behavior of derivation space. We apply these ...

Journal: :Kyoto Journal of Mathematics 2012

Journal: :The Quarterly Journal of Mathematics 2012

‎Let $S$ be an inverse semigroup with the set of idempotents $E$‎. We prove that the semigroup algebra $ell^{1}(S)$ is always‎ ‎$2n$-weakly module amenable as an $ell^{1}(E)$-module‎, ‎for any‎ ‎$nin mathbb{N}$‎, ‎where $E$ acts on $S$ trivially from the left‎ ‎and by multiplication from the right‎. ‎Our proof is based on a common fixed point property for semigroups‎.  

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید