نتایج جستجو برای: wavenet
تعداد نتایج: 91 فیلتر نتایج به سال:
Human body tracking is useful in applications like medical diagnostic, human computer interface, visual surveillance etc. In this paper, a trajectory-learning algorithm using wavenet is proposed to track human body in real time without sacrificing accuracy. Human body is located within a small searching window using color and shape as heuristic. The location and size of the searching window are...
Generative models in vision have seen rapid progress due to algorithmic improvements and the availability of high-quality image datasets. In this paper, we offer contributions in both these areas to enable similar progress in audio modeling. First, we detail a powerful new WaveNet-style autoencoder model that conditions an autoregressive decoder on temporal codes learned from the raw audio wave...
This paper introduces HybridNet, a hybrid neural network to speed-up autoregressive models for raw audio waveform generation. As an example, we propose a hybrid model that combines an autoregressive network named WaveNet and a conventional LSTM model to address speech synthesis. Instead of generating one sample per time-step, the proposed HybridNet generates multiple samples per time-step by ex...
Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generativ...
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-...
PESQ, Perceptual Evaluation of Speech Quality [5], and POLQA, Perceptual Objective Listening Quality Assessment [1] , are standards comprising a test methodology for automated assessment of voice quality of speech as experienced by human beings. The predictions of those objective measures should come as close as possible to subjective quality scores as obtained in subjective listening tests, us...
Express Wavenet is an improved optical diffractive neural network. At each layer, it uses wavelet-like pattern to modulate the phase of waves. For input image with n2 pixels, express wavenet reduce parameter number from O(n2) O(n). Only need one percent parameters, and accuracy still very high. In MNIST dataset, only needs 1229 parameters get 92%, while standard network 125440 parameters. The r...
In recent years, deep learning has achieved great success in speech enhancement. However, there are two major limitations regarding existing works. First, the Bayesian framework is not adopted in many such deep-learning-based algorithms. In particular, the prior distribution for speech in the Bayesian framework has been shown useful by regularizing the output to be in the speech space, and thus...
Currently, most speech processing techniques use magnitude spectrograms as frontend and are therefore by default discarding part of the signal: the phase. In order to overcome this limitation, we propose an end-to-end learning method for speech denoising based on Wavenet. The proposed model adaptation retains Wavenet’s powerful acoustic modeling capabilities, while significantly reducing its ti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید