نتایج جستجو برای: wave dependent surface drag coefficient
تعداد نتایج: 1615948 فیلتر نتایج به سال:
SUMMARY An analysis is presented of measurements made at RAE in 1957-1959 on a series of delta wings. Lift and drag have been measured by strain-gauge balance at Mach numbers between 1.4 and 2.8. On some of the wings surface pressure distributions have also been measured. This Report deals mainly with the zero-lift wave drag, but also gives information on skin friction drag and lift-dependent d...
This paper is presents The computation of the wave-making drag of underwater vehicle by boundary element method (BEM). The method is employed constant strength doublet and source distributions on each quadrilateral element representing the body and free surface. Using Green’s function, boundary integral equation is constituted for all elements by a matrix form to determine the potential o...
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (RO...
[1] The dependence of the air-sea momentum flux on surface wave fields is investigated at very high winds under tropical cyclones. A coupled wave-wind model is applied to estimate the momentum flux under ten hurricanes in the western Atlantic Ocean during 1998–2003. The model explicitly calculates the wave-induced stress vector and the total wind stress vector from a given wind speed vector and...
Historically, our understanding of the air-sea surface stress has been derived from engineering studies of turbulent flows over flat solid surfaces, and more recently, over rigid complex geometries. Over the ocean however, the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the constant-stress turbulent atmospheric boundary layer...
The lower limit on the drag coefficient under hurricane force winds is determined by the break-up of the air–sea interface due to Kelvin–Helmholtz instability and formation of the two-phase transition layer consisting of sea spray and air bubbles. As a consequence, a regime of marginal stability develops. In this regime, the air–sea drag coefficient is determined by the turbulence characteristi...
Abstract Flow in rivers and the coastal ocean is controlled by frictional force exerted on water riverbed or seabed roughness. The typically characterized a drag coefficient C d , which estimated from bulk measurements often assumed constant. Here, we demonstrate relationship between bed roughness surface turbulence that can be used to make remote estimates of . We observe regions with larger r...
Accurate predictions of the sea state–dependent air–sea momentum flux require a thorough understanding of the wave boundary layer turbulence over surface waves. A set of momentum and energy equations is derived to formulate and analyze wave boundary layer turbulence. The equations are written in wavefollowing coordinates, and all variables are decomposed into horizontalmean, wave fluctuation, a...
The drag coefficient C_{D} of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×10^{5}. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید