نتایج جستجو برای: vertex pi polynomial
تعداد نتایج: 176159 فیلتر نتایج به سال:
abstract. suppose g is an nvertex and medge simple graph with edge set e(g). an integervalued function f: e(g) → z is called a flow. tutte was introduced the flow polynomial f(g, λ) as a polynomial in an indeterminate λ with integer coefficients by f(g,λ) in this paper the flow polynomial of some dendrimers are computed.
General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.
Let G be a simple connected graph with the vertex set V = V(G) and the edge set E = E(G), without loops and multiple edges. For counting qoc strips in G, Omega polynomial was introduced by Diudea and was defined as Ω(G,x ) = ( , ). , c c m G c x where m(G,c) be the number of qoc strips of length c in the graph G. Following Omega polynomial, the Sadhana polynomial was defined by Ashrafi et al ...
A topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. A new counting polynomial, called the "Omega" W(G, x) polynomial, was recently proposed by Diudea on the ground of quasi-orthogonal cut "qoc" edge strips in a polycyclic graph. In this paper, the vertex PI, Szeged and omega polynomials of carbon nanocones CNC4[n] are computed.
For a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}, the k disjoint paths problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti for each i = 1, . . . , k. In the corresponding optimization problem, the shortest disjoint paths problem, the vertex-disjoint paths Pi have to be chosen such that a given objective function is minimized. We...
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
general formulas are obtained for the vertex padmakar-ivan index (piv) of tetrathiafulvalene(ttf) dendrimer, whereby ttf units we are employed as branching centers. the piv index isa wiener-szeged-like index developed very recently. this topological index is defined as thesummation of all sums of nu(e) and nv(e), over all edges of connected graph g.
Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.
In this paper, at first we mention to some results related to PI and vertex Co-PI indices and then we introduce the edge versions of Co-PI indices. Then, we obtain some properties about these new indices.
In this paper, the robust vertex centdian location problem with uncertain vertex weights on general graphs is studied. The used criterion to solve the problem is the min-max regret criterion. This problem is investigated with objective function contains $lambda$ and a polynomial time algorithm for the problem is presented. It is shown that the vertex centdian problem on general graphs i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید