نتایج جستجو برای: vertex pi index
تعداد نتایج: 474882 فیلتر نتایج به سال:
a lot of research and various techniques have been devoted for finding the topologicaldescriptor wiener index, but most of them deal with only particular cases. there exist threeregular plane tessellations, composed of the same kind of regular polygons namely triangular,square, and hexagonal. using edge congestion-sum problem, we devise a method to computethe wiener index and demonstrate this m...
A lot of research and various techniques have been devoted for finding the topological descriptor Wiener index, but most of them deal with only particular cases. There exist three regular plane tessellations, composed of the same kind of regular polygons namely triangular, square, and hexagonal. Using edge congestion-sum problem, we devise a method to compute the Wiener index and demonstrate th...
Recently the vertex Padmakar–Ivan (PI v) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper the vertex PI index and Szeged index of bridge graphs are determined. Using these formulas, the vertex PI indices and Szeged indices of several graphs are computed.
The vertex Padmakar-Ivan (PIv) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper we provide an analogue to the results of T. Mansour and M. Schork [The PI index of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 723-734]. Two efficient formulas for calculating th...
The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product...
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
In this paper, at first we introduce a new index with the name Co-PI index and obtain some properties related this new index. Then we compute this new index for TUC4C8(R) nanotubes.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید