نتایج جستجو برای: tuple total dominating set
تعداد نتایج: 1424241 فیلتر نتایج به سال:
Given a simple graph G = (V, E) and a fixed positive integer k. In a graph G, a vertex is said to dominate itself and all of its neighbors. A set D ⊆ V is called a k-tuple dominating set if every vertex in V is dominated by at least k vertices of D. The k-tuple domination problem is to find a minimum cardinality k-tuple dominating set. This problem is NP-complete for general graphs. In this pap...
Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set, also known as a k-tuple total dominating set, is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, resp. total k-d...
A set D ⊆ V is called a k-tuple dominating set of a graph G = (V,E) if |NG[v] ∩D| ≥ k for all v ∈ V , where NG[v] denotes the closed neighborhood of v. A set D ⊆ V is called a liar’s dominating set of a graph G = (V,E) if (i) |NG[v] ∩D| ≥ 2 for all v ∈ V , and (ii) for every pair of distinct vertices u, v ∈ V , |(NG[u] ∪NG[v]) ∩D| ≥ 3. Given a graph G, the decision versions of k-Tuple Dominatio...
The k-tuple domination problem, for a fixed positive integer k, is to find a minimum size vertex subset such that every vertex in the graph is dominated by at least k vertices in this set. The case when k 2 is called 2-tuple domination problem or double domination problem. In this paper, the 2-tuple domination problem is studied on interval graphs from an algorithmic point of view, which takes ...
In wireless sensor networks, a virtual backbone has been proposed as the routing infrastructure to alleviate the broadcasting storm problem and perform some other tasks such as area monitoring. Previous work in this area has mainly focused on how to set up a small virtual backbone for high efficiency, which is modelled as the minimum Connected Dominating Set (CDS) problem. In this paper we cons...
In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V (G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of G−S at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γm, and of an m-tuple dominating set is γ×m. For a property π of subsets of V (G), wit...
a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex is a {em total dominating set} if every vertex of $v(g)$ is adjacent to some vertex in $s$. the {em total domatic number} of a graph $g$ is the maximum number of total dominating sets into which the vertex set of $g$ can be partitioned. we show that the total domatic number of a random $r$-regular graph is almost...
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
a total dominating set of a graph $g$ is a set $d$ of vertices of $g$ such that every vertex of $g$ has a neighbor in $d$. the total domination number of a graph $g$, denoted by $gamma_t(g)$, is~the minimum cardinality of a total dominating set of $g$. chellali and haynes [total and paired-domination numbers of a tree, akce international ournal of graphs and combinatorics 1 (2004), 6...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید