نتایج جستجو برای: transitive graph
تعداد نتایج: 204108 فیلتر نتایج به سال:
for two normal edge-transitive cayley graphs on groups h and k which have no common direct factor and gcd(jh=h ′j; jz(k)j) = 1 = gcd(jk=k ′j; jz(h)j), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
A subgroup G of automorphisms of a graph X is said to be 1 2-transitive if it is vertex and edge but not arc-transitive. The graph X is said to be 1 2-transitive if Aut X is 1 2-transitive. The graph X is called one-regular if Aut X acts regularly on the set arcs of X. The interplay of three diierent concepts of maps, one-regular graphs and 1 2-transitive group actions on graphs of valency 4 is...
This paper concerns finite, edge-transitive direct and strong products, as well as infinite weak Cartesian products. We prove that the direct product of two connected, non-bipartite graphs is edge-transitive if and only if both factors are edgetransitive and at least one is arc-transitive, or one factor is edge-transitive and the other is a complete graph with loops at each vertex. Also, a stro...
Weakly s-arc transitive graphs are introduced and determined. A graph is said to be weakly s-arc transitive if its endomorphism monoid acts transitively on the set of s-arcs. The main results are: (1) A nonbipartite graph is weakly s-arc transitive if and only if it is s-arc transitive. (2) A tree with diameter d is weakly s-arc transitive for all 0 s d. (3) A bipartite graph with girth g = 2s ...
It is shown that every connected vertex-transitive graph of order 4p, where p is a prime, is hamiltonian with the exception of the Coxeter graph which is known to possess a Hamilton path. In 1969, Lovász [22] asked if every finite, connected vertex-transitive graph has a Hamilton path, that is, a path going through all vertices of the graph. With the exception of K 2 , only four connected verte...
I describe a 27-vertex graph that is vertex-transitive and edgetransitive but not 1-transitive. Thus while all vertices and edges of this graph are similar, there are no edge-reversing automorphisms. A graph (undirected, without loops or multiple edges) is said to be vertextransitive if its automorphism group acts transitively on the set of vertices, edge-transitive if its automorphism group ac...
The theory of vertex-transitive graphs has developed in parallel with the theory of transitive permutation groups. In this chapter we explore some of the ways the two theories have influenced each other. On the one hand each finite transitive permutation group corresponds to several vertex-transitive graphs, namely the generalised orbital graphs which we shall discuss below. On the other hand, ...
A classi cation of all arc transitive graphs of order a product of two primes is given Furthermore it is shown that cycles and complete graphs are the only arc transitive Cayley graph of abelian group of odd order Introductory remarks Throughout this paper graphs are nite simple and undirected By p and q we shall always denote prime numbers A k arc in a graph X is a sequence of k vertices v v v...
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید