نتایج جستجو برای: tmc1 gene
تعداد نتایج: 1141439 فیلتر نتایج به سال:
Background and Objective: TMC1 gene mutations are known as the most common causes of autosomal recessive non-syndromic hearing loss (ARNSHL) in different populations. According to large size of the TMC1 gene and the large number of identified mutations in this gene, application of polymorphic markers is suggested for carrier detection and prenatal diagnosis in families. In this study, informati...
Transmembrane channel-like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after...
Cochlear hair cells convert sound stimuli into electrical signals by gating of mechanically sensitive ion channels in their stereociliary (hair) bundle. The molecular identity of this ion channel is still unclear, but its properties are modulated by accessory proteins. Two such proteins are transmembrane channel-like protein isoform 1 (TMC1) and tetraspan membrane protein of hair cell stereocil...
Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel...
Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel-like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bun...
BACKGROUND Tonotopy is one of the most fundamental principles of auditory function. While gradients in various morphological and physiological characteristics of the cochlea have been reported, little information is available on gradient patterns of gene expression. In addition, the audiograms in autosomal dominant non syndromic hearing loss can be distinctive, however, the mechanism that accou...
(2016) Tmc1 point mutation affects Ca2+ sensitivity and block by dihydrostreptomycin of the mechanoelectrical transducer current of mouse outer hair cells. This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the U...
We report observations of several deuterated species in the dark clouds L134N and TMC1, and in particular of NH2D (deuterated ammonia). NH2D has been detected for the first time towards the dense core TMC1-N and very strong emission has been confirmed towards L134N. The deuterium fractionation is very different in these two clouds, with abundance ratio [NH2D]/[NH3]∼ 0.1 and ∼ 0.02, [N2D]/[N2H]∼...
Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the transmembrane channel-like gene1 (TMC1) are known to cause autosomal dominant and recessive forms of nonsyndromic hearing loss linked to the loci of DFNA36 and DFNB7/11, respectively. We characterized a six-generation Chinese family (5315) with progressive, postlingual autosomal dominant nonsyndromic hearing loss ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید