نتایج جستجو برای: tikhonov regularization
تعداد نتایج: 21274 فیلتر نتایج به سال:
We propose a regularization method for solving ill-posed problems, under the assumption that the solutions are piecewise constant functions with unknown level sets and unknown level values. A level set framework is established for the inverse problem and a Tikhonov regularization approach is proposed. Existence of generalized minimizers for the Tikhonov functional is proven. Moreover, we establ...
In a recent paper [24] an algorithm for large-scale Tikhonov regularization in standard form called GKB-FP was proposed and numerically illustrated. In this paper, further insight into the convergence properties of this method is provided and extensions to general-form Tikhonov regularization are introduced. In addition, as alternative to Tikhonov regularization, a preconditioned LSQR method co...
Total variation-penalized Tikhonov regularization is a popular method for the restoration of images that have been degraded by noise and blur. The method is particularly effective, when the desired noiseand blur-free image has edges between smooth surfaces. The method, however, is computationally expensive. We describe a hybrid regularization method that combines a few steps of the GMRES iterat...
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...
Abstract. Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a linear regularizat...
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...
An important issue in quantitative nance is model calibration. The calibration problem is the inverse of the pricing problem. Instead of computing prices in a model with given values for its parameters, one wishes to compute the values of the model parameters that are consistent with observed prices. Now, it is well-known by physicists that such inverse problems are typically ill-posed. So, if ...
In this paper, we study a Tikhonov-type regularization for restricted Boltzmann machines (RBM). We present two alternative formulations of the Tikhonov-type regularization which encourage an RBM to learn a smoother probability distribution. Both formulations turn out to be combinations of the widely used weight-decay and sparsity regularization. We empirically evaluate the effect of the propose...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید