نتایج جستجو برای: strongly jordan zero
تعداد نتایج: 375216 فیلتر نتایج به سال:
abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n 1, then any jordan left derivation on the ring tn(r) of all n×n up...
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
in this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. we study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. for strongly z-ideals, we analyze prime ideals using the concept of zero sets. moreover, it is proven that the intersection of all zero sets of a prime ideal of c(l),...
Let A be an algebra over a commutative unital ring C. We say that A is zero triple product determined if for every C-module X and every trilinear map {·, ·, ·}, the following holds: if {x, y, z} 0 whenever xyz 0, then there exists a C-linear operator T : A3 −→ X such that {x, y, z} T xyz for all x, y, z ∈ A. If the ordinary triple product in the aforementioned definition is replaced by Jordan t...
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.
The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید