نتایج جستجو برای: stochastic fuzzy recurrent neural networks
تعداد نتایج: 936963 فیلتر نتایج به سال:
Neurofuzzy systems—the combination of artificial neural networks with fuzzy logic—have become useful in many application domains. However, conventional neurofuzzy models usually need enhanced representational power for applications that require context and state (e.g., speech, time series prediction, control). Some of these applications can be readily modeled as finite state automata. Previousl...
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays is considered. Based on M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and global exponential stability in mean square means of the equilibrium point for the addressed impulsive st...
In this paper, a new architecture combining dynamic neural units and fuzzy logic approaches is proposed for a complex chemical process modeling. Such processes need a particular care where the designer constructs the neural network, the fuzzy and the fuzzy neural network models which are very useful in black box modeling. The proposed architecture is specified to the pH chemical reactor due to ...
The paradigm of deterministic nite-state automata (DFAs) and their corresponding regular languages have been shown to be very useful for addressing fundamental issues in recurrent neural networks. The issues that have been addressed include knowledge representation, extraction, and reenement as well development of advanced learning algorithms. Recurrent neural networks are also very promising t...
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
Leveraging advances in variational inference, we propose to enhance recurrent neural networks with latent variables, resulting in Stochastic Recurrent Networks (STORNs). The model i) can be trained with stochastic gradient methods, ii) allows structured and multi-modal conditionals at each time step, iii) features a reliable estimator of the marginal likelihood and iv) is a generalisation of de...
There has been an increased interest in combining fuzzy systems with neural networks because fuzzy neural systems merge the advantages of both paradigms. On the one hand, parameters in fuzzy systems have clear physical meanings and rule-based and linguistic information can be incorporated into adaptive fuzzy systems in a systematic way. On the other hand, there exist powerful algorithms for tra...
Based on previous work on encoding deterministic nite-state automata (DFAs) in discrete-time, second-order recurrent neural networks with sigmoidal discriminant functions, we propose an algorithm that constructs an augmented recurrent neural network that encodes fuzzy nite-state automata (FFAs). Given an arbitrary FFA, we apply an algorithm which transforms the FFA into an equivalent determinis...
The paper proposed a new fuzzy-neural recurrent multi-model for systems identification and states estimation of complex nonlinear mechanical plants with backlash. The parameters and states of the local recurrent neural network models are used for a local direct and indirect adaptive control systems design. The designed local control laws are coordinated by a fuzzy rule based control system. Sim...
A novel global hybrid algorithm for feedforward neural networks p. 9 Study on relationship between NIHSS and TCM-SSASD based on the BP neural network multiple models method p. 17 Application of back-propagation neural network to power transformer insulation diagnosis p. 26 Momentum BP neural networks in structural damage detection based on static displacements and natural frequencies p. 35 Defo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید