نتایج جستجو برای: squares and newton
تعداد نتایج: 16835918 فیلتر نتایج به سال:
The ensemble Kalman smoother (EnKS) is used as a linear least-squares solver in the Gauss–Newton method for the large nonlinear least-squares system in incremental 4DVAR. The ensemble approach is naturally parallel over the ensemble members and no tangent or adjoint operators are needed. Furthermore, adding a regularization term results in replacing the Gauss–Newton method, which may diverge, b...
The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution...
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
The local superlinear convergence of the generalized Newton method for solving systems of nonsmooth equations has been proved by Qi and Sun under the semismooth condition and nonsingularity of the generalized Jacobian at the solution. Unlike the Newton method for systems of smooth equations, globalization of the generalized Newton method seems dif-cult to achieve in general. However, we show th...
This paper studies Newton-type methods for minimization of partly smooth convex functions. Sequential Newton methods are provided using local parameterizations obtained from U -Lagrangian theory and from Riemannian geometry. The Hessian based on the U -Lagrangian depends on the selection of a dual parameter g; by revealing the connection to Riemannian geometry, a natural choice of g emerges for...
This paper studies Newton-type methods for minimization of partly smooth convex functions. Sequential Newton methods are provided using local parameterizations obtained from U-Lagrangian theory and from Riemannian geometry. The Hessian based on the ULagrangian depends on the selection of a dual parameter g; by revealing the connection to Riemannian geometry, a natural choice of g emerges for wh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید