نتایج جستجو برای: spio
تعداد نتایج: 433 فیلتر نتایج به سال:
In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron mic...
BACKGROUND We posit that the same mononuclear phagocytes (MP) that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanopa...
INTRODUCTION To investigate the biodistribution and retention properties of the new super paramagnetic iron oxide (new SPIO: mean hydrodynamic diameter, 100 nm) nanoparticles, which have concentrated polymer brushes in the outer shell and are difficult for phagocytes to absorb, and to compare the new SPIO with clinically approved SPIO (Resovist: mean hydrodynamic diameter, 57 nm). MATERIALS A...
Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385 ± 5.0 nm with PDI...
Repair of a massive meniscal defect remains a challenge in the clinic. However, targeted magnetic cell delivery, an emerging technique, may be useful in its treatment. The present study aimed to determine the effect of targeted intra-articular injection of superparamagnetic iron oxide (SPIO)-labeled adipose-derived mesenchymal stem cells (ASCs) in a rabbit model of a massive meniscal defect. AS...
PURPOSE The long-lasting hypointensities in cardiac magnetic resonance (CMR) were believed to originate from superparamagnetic iron oxide (SPIO)-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive si...
AIMS This study investigated whether superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by in vivo magnetic resonance (MR) imaging with conventional 1.5-T system examinations in the bladders of rats and rabbits. METHODS SPIO were transferred to hMSCs, using GenePORTER. After SPIO-labeled hMSCs were transplanted into the animal blad...
Bladder cancer is the most common malignancy of the urinary tract for which the accurate measurement of minimal residual disease is critical to treatment and determining prognosis. Although cystoscope examination and voided urine cytology remain the current standard of care for detecting residual disease, these approaches are limited by mechanical trauma and lack sensitivity. To develop a new a...
Introduction MRI cellular trafficking using superparamagnetic iron oxide (SPIO) is an area of intense research with broad applications in regenerative medicine and immunology research, however a practical quantitative approach that is both sensitive and specific to SPIO has yet to be presented. Quantification in cellular imaging studies is vital to investigate comparative efficacies for regener...
AIM The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues. METHODS MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید