نتایج جستجو برای: spectral radius preserving
تعداد نتایج: 259167 فیلتر نتایج به سال:
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
A pseudo-Anosov surface automorphism φ has associated to it an algebraic unit λφ called the dilatation of φ. It is known that in many cases λφ appears as the spectral radius of a Perron–Frobenius matrix preserving a symplectic form L. We investigate what algebraic units could potentially appear as dilatations by first showing that every algebraic unit λ appears as an eigenvalue for some integra...
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
we give further results for perron-frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. we indicate two techniques for establishing the main theorem ofperron and frobenius on the numerical range. in the rst method, we use acorresponding version of wielandt's lemma. the second technique involves graphtheory.
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
Let f be an orientation-preserving homeomorphism of the disk D, P a finite invariant subset and [fP ] the isotopy class of f in D \ P . We give a non trivial lower bound of the topological entropy for maps in [fP ], using the spectral radius of some specializations in GL(n,C) of the Burau matrix associated with [fP ] and we discuss some examples.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید