نتایج جستجو برای: sequential floating forward selection
تعداد نتایج: 532216 فیلتر نتایج به سال:
Feature selection process is used to reduce the feature vector length and identify thediscriminative features. Many acoustic-phonetic features including Mel-Frequency CepstralCoefficient (MFCC), Energy, Pitch, Zero-crossing, spectrum were tested individually for Arabicmispronunciation detection using three classifiers; Random Forest, Bayesian classifier, BaggedSupport Vector Machine (SVM). The ...
Feature selection is a critical procedure in many pattern recognition applications. There are two distinct mechanisms for feature selection namely the wrapper methods and the filter methods. The filter methods are generally considered inferior to wrapper methods, however wrapper methods are computationally more demanding than filter methods. A novel filter feature selection method based on mutu...
A new approach for automated diagnosis and classification of Magnetic Resonance (MR) human brain images is proposed. The proposed method uses Wavelets Transform (WT) as input module to Genetic Algorithm (GA) and Support Vector Machine (SVM). It segregates MR brain images into normal and abnormal. This contribution employs genetic algorithm for feature selection which requires much lighter compu...
A novel method for microarray data classification is proposed in this letter. In this scheme, the sequential floating forward selection (SFFS) technique is used to select the independent components of the DNA microarray data for classification. Experimental results show that the method is efficient and feasible. r 2006 Elsevier B.V. All rights reserved.
Writer identification has become a hot research topic in the fields of pattern recognition, forensic document analysis, criminal justice system, etc. The goal this is to propose an efficient approach for writer based on online handwritten Kanji characters. We collected 47,520 samples from 33 people who wrote 72 handwritten-based characters 20 times. extracted features handwriting data and propo...
In this paper a computer-aided diagnostic system for the classification of hepatic lesions from Computed Tomography (CT) images is presented. Regions of Interest (ROI’s) taken from non-enhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas (a total of 147 samples), have been used as input to the system. The system consists of two levels: the feature extrac...
In this paper, a decision tree-based approach for recognizing stem and calyx regions of apples by computer vision is proposed. The method starts with background removal and object segmentation by thresholding. Statistical, textural and shape features are extracted from each segmented object and these features are introduced to two decision tree algorithms: CART and C4.5. Feature selection is ac...
This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Flo...
A large number of algorithms have been proposed for feature subset selection. Our experimental results show that the sequential forward floating selection (SFFS) algorithm, proposed by Pudil et al., dominates the other algorithms tested. We study the problem of choosing an optimal feature set for land use classification based on SAR satellite images using four different texture models. Pooling ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید