نتایج جستجو برای: semi supervised
تعداد نتایج: 172867 فیلتر نتایج به سال:
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
exploiting multimodal information like acceleration and heart rate is a promising method to achieve human action recognition. a semi-supervised action recognition approach aucc (action understanding with combinational classifier) using the diversity of base classifiers to create a high-quality ensemble for multimodal human action recognition is proposed in this paper. furthermore, both labeled ...
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
We study a regression problem where for some part of the data we observe both label variable (Y) and predictors (X), while other only are given. Such arises, example, when observations costly may require skilled human agent. When conditional expectation E[Y|X] is not exactly linear, one can consider best linear approximation to expectation, which be estimated consistently by least-square estima...
Automated short answer scoring is increasingly used to give students timely feedback about their learning progress. Building scoring models comes with high costs, as stateof-the-art methods using supervised learning require large amounts of hand-annotated data. We analyze the potential of recently proposed methods for semi-supervised learning based on clustering. We find that all examined metho...
Imagine two identical people receive exactly the same training on how to classify certain objects. Perhaps surprisingly, we show that one can then manipulate them into classifying some test items in opposite ways, simply depending on what other test items they are asked to classify (without label feedback). We call this the Test-Item Effect, which can be induced by the order or the distribution...
Blog classification (e.g., identifying bloggers’ gender or age) is one of the most interesting current problems in blog analysis. Although this problem is usually solved by applying supervised learning techniques, the large labeled dataset required for training is not always available. In contrast, unlabeled blogs can easily be collected from the web. Therefore, a semi-supervised learning metho...
Graph-based semi-supervised learning (GSSL) is one of the most important semi-supervised learning (SSL) paradigms. Though GSSL methods are helpful in many situations, they may hurt performance when using unlabeled data. In this paper, we propose a new GSSL method GsslIs based on instance selection in order to reduce the chances of performance degeneration. Our basic idea is that given a set of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید