نتایج جستجو برای: runge kutta technique

تعداد نتایج: 615420  

2014
Ben K. Bradley Brandon A. Jones Gregory Beylkin Kristian Sandberg Penina Axelrad

We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit ...

1998
Eitan Tadmor

We study the stability of Runge-Kutta methods for the time integration of semidiscrete systems associated with time dependent PDEs. These semidiscrete systems amount to large systems of ODEs with the possibility that the matrices involved are far from being normal. The stability question of their Runge-Kutta methods, therefore, cannot be addressed by the familiar scalar arguments of eigenvalues...

2001
Hiroshi Sugiura Tatsuo Torii

Sugiura, H. and T. Torii, A method for constructing generalized Runge-Kutta methods, Journal of Computational and Applied Mathematics 38 (1991) 399-410. In the implementation of an implicit Runge-Kutta formula, we need to solve systems of nonlinear equations. In this paper, we analyze the Newton iteration process and a modified Newton iteration process for solving these equations. Then we propo...

Journal: :Numerische Mathematik 2011
Lehel Banjai Christian Lubich Jens Markus Melenk

An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutt...

2016
Julien Alexandre dit Sandretto Alexandre Chapoutot

A set of validated numerical integration methods based on explicit and implicit Runge-Kutta schemes is presented to solve, in a guaranteed way, initial value problems of ordinary differential equations. Runge-Kutta methods are well-known to have strong stability properties, which make them appealing to be the basis of validated numerical integration methods. A new approach to bound the local tr...

Journal: :SIAM J. Scientific Computing 2017
Ashish Bhatt Brian E. Moore

Exponential Runge-Kutta (ERK) and partitioned exponential Runge-Kutta (PERK) 4 methods are developed for solving initial value problems with vector fields that can be split into con5 servative and linear non-conservative parts. The focus is on linearly damped ordinary differential 6 equations, that possess certain invariants when the damping coefficient is zero, but, in the presence of 7 consta...

Journal: :iranian journal of numerical analysis and optimization 0

in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...

2015
Navchetan Awasthi

Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...

2004
W. De Roeck

One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the timeand space-derivatives, should exhibit a low dispersion and dissipation error. This p...

Journal: :SIAM J. Numerical Analysis 2010
Erik Burman Alexandre Ern Miguel A. Fernández

We analyze explicit Runge–Kutta schemes in time combined with stabilized finite elements in space to approximate evolution problems with a first-order linear differential operator in space of Friedrichs-type. For the time discretization, we consider explicit secondand third-order Runge–Kutta schemes. We identify a general set of properties on the spatial stabilization, encompassing continuous a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید