نتایج جستجو برای: runge kutta order 4 method
تعداد نتایج: 3422710 فیلتر نتایج به سال:
this paper presents the jeffery hamel flow of a non-newtonian fluid namely casson fluid. suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary differential equation. variation of parameters method (vpm) is then employed to solve resulting equation. same problem is solved numerical by using runge-kutta order 4 method. a c...
We study the performance of methods of lines combining discontinuous Galerkin spatial discretizations and explicit Runge-Kutta time integrators, with the aim of deriving optimal Runge-Kutta schemes for wave propagation applications. We review relevant Runge-Kutta methods from literature, and consider schemes of order q from 3 to 4, and number of stages up to q + 4, for optimization. From a user...
Abstract In this paper, third-order 3-stage diagonally implicit Runge–Kutta–Nystrom method embedded in fourthorder 4-stage for solving special second-order initial value problems is constructed. The method has the property of minimized local truncation error as well as the last row of the coefficient matrix is equal to the vector output. The stability of the method is investigated and a standar...
An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutt...
In this article, a new Runge-Kutta-Nyström method is derived. The new RKN method has zero phase-lag, zero amplification error and zero first derivative of phase-lag. This method is basically based on the sixth algebraic order Runge-Kutta-Nyström method, which has proposed by Dormand, El-Mikkawy and Prince. Numerical illustrations show that the new proposed method is much efficient as compared w...
We analyze explicit Runge–Kutta schemes in time combined with stabilized finite elements in space to approximate evolution problems with a first-order linear differential operator in space of Friedrichs-type. For the time discretization, we consider explicit secondand third-order Runge–Kutta schemes. We identify a general set of properties on the spatial stabilization, encompassing continuous a...
The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4 order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compar...
The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4 order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compar...
The optimization of some W-methods [7] for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) [3, 4] is used to ...
Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید