نتایج جستجو برای: right pp rings

تعداد نتایج: 408828  

Journal: :bulletin of the iranian mathematical society 2016
sh. asgari m. arabi-kakavand h. khabazian

we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...

Journal: :bulletin of the iranian mathematical society 2011
z. zhu

we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

Journal: :bulletin of the iranian mathematical society 2012
l. zhao x. zhu

we introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. we firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. we next argue about the strong$alpha$-reversibility of some kinds of extensions. a number ofproperties of this version are established. it is shown ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1390

حلقه r‎ نیم جابجایی نامیده می شود هرگاه ab=0 نتیجه دهد‎ arb=0 ‎برای هر a,b ? r. هوو و همکاران نشان دادند چنانچه ‎r‎ نیم جابجائی باشد حلقه چندجمله ای های r[x] لزوماْ نیم جابجایی نیست اما نزدیک-نیم جابجایی می تواند باشد. در این پایان نامه، ضمن معرفی و بررسی حلقه های نزدیک-نیم جابجایی، ساختار حلقه های نیم جابجایی و نزدیک-نیم جابجایی را بررسی نموده وکلاس هایی از آنها را گسترش می دهیم. نشان می دهیم ع...

‎We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel‎, ‎that is‎, ‎every simple right $R$-module has a flat $B$-cover‎. ‎We give some properties of such rings along with examples‎. ‎We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...

Journal: :bulletin of the iranian mathematical society 0
y. mehmet demirci department of mathematics, sinop university, 57000, sinop, turkey.

‎we call a ring $r$ right generalized semiperfect if every simple right $r$-module is an epimorphic image of a flat right $r$-module with small kernel‎, ‎that is‎, ‎every simple right $r$-module has a flat $b$-cover‎. ‎we give some properties of such rings along with examples‎. ‎we introduce flat strong covers as flat covers which are also flat $b$-covers and give characterizations of $a$-perfe...

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

Journal: :bulletin of the iranian mathematical society 0
z. ‎zhu department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید