نتایج جستجو برای: revised edge szeged index
تعداد نتایج: 555883 فیلتر نتایج به سال:
We show that on cactus graphs the Szeged index is bounded above by twice Wiener index. For revised situation reversed if graph class further restricted. Namely, all blocks of a are cycles, then its below Additionally, we these bounds sharp and examine cases equality. Along way, provide formulation as sum over vertices, which proves very helpful, may be interesting in other contexts.
The edge Szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph G, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. In this paper, the edge Szeged index of one-pentagonal carbon nanocone CNC5[n] is computed for the first ...
In chemical graph theory, many graph parameters, or topological indices, were proposed as estimators of molecular structural properties. Often several variants of an index are considered. The aim is to extend the original concept to larger families of graphs than initially considered, or to make it more precise and discriminant, or yet to make its range of values similar to that of another inde...
The edge-Szeged index is recently introduced graph invariant, having applications in chemistry. In this paper, a method of calculating the edge-Szeged index of hexagonal chain is proposed, and the results of the index are presented.
We study distance-based graph invariants, such as the Wiener index, the Szeged index, and variants of these two. Relations between the various indices for trees are provided as well as formulas for line graphs and product graphs. This allows us, for instance, to establish formulas for the edge Wiener index of Hamming graphs, C4nanotubes and C4-nanotori. We also determine minimum and maximum of ...
The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...
Recently, it was conjectured by Gutman and Ashrafi that the complete graph Kn has the greatest edge-Szeged index among simple graphs with n vertices. This conjecture turned out to be false, but led Vukičević to conjecture the coefficient 1/15552 of n6 for the approximate value of the greatest edge-Szeged index. We provide counterexamples to this conjecture.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید