نتایج جستجو برای: rada16
تعداد نتایج: 52 فیلتر نتایج به سال:
While cell transplantation presents a potential strategy to treat the functional deficits of neurodegenerative diseases or central nervous system injuries, the poor survival rate of grafted cells in vivo is a major barrier to effective therapeutic treatment. In this study, we investigated the role of a peptide-based nanofibrous scaffold composed of the selfassembling peptide RADA16-I to support...
Controlling the cellular microenvironment is thought to be critical for the successful application of biomaterials for regenerative medicine strategies. Self-assembling peptides are proving to be a promising platform for a variety of regenerative medicine applications. Specifically, RADA16-I self-assembling peptides have been successfully used for 3D cell culture, accelerated wound healing, and...
Biological hydrogels consisting of self-assembling peptide nanofibers are potentially excellent materials for various controlled molecular release applications. The individual nanofiber consists of ionic self-complementary peptides with 16 amino acids (RADA16, Ac-RADARADARADARADA-CONH(2)) that are characterized by a stable beta-sheet structure and undergo self-assembly into hydrogels containing...
The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA...
The complex physiopathological events occurring after spinal cord injury (SCI) make this devastating trauma still incurable. Self-assembling peptides (SAPs) are nanomaterials displaying some appealing properties for application in regenerative medicine because they mimic the structure of the extra-cellular matrix (ECM), are reabsorbable, allow biofunctionalizations and can be injected directly ...
Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...
Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-...
traumatic brain injury (tbi) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. a strong cascade of inflammatory responses begins as a result of tbi which include recalling peripheral leukocytes into the...
Nanofiber structures of some peptides and proteins as biological materials have been studied extensively, but their molecular mechanism of self-assembly and reassembly still remains unclear. We report here the reassembly of an ionic self-complementary peptide RADARADARADARADA (RADA16-I) that forms a well defined nanofiber scaffold. The 16-residue peptide forms stable beta-sheet structure and un...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید