نتایج جستجو برای: quantum dot cellular automata qca
تعداد نتایج: 760114 فیلتر نتایج به سال:
Quantum-dot cellular automata ~QCA!, arrays of coupled quantum-dot devices, are proposed for quantum computing. The notion of coherent QCA ~CQCA! is introduced in order to distinguish QCA applied to quantum computing from classical digital QCA. Information is encoded in the spatial state of the electrons in the multidot system. A line of CQCA cells can work as a quantum register. The basic sing...
quantum-dot cellular automata (qca) are a promising nanotechnology to implement digital circuits at the nanoscale. devices based on qca have the advantages of faster speed, lower power consumption, and greatly reduced sizes. in this paper, we are presented the circuits, which generate random numbers in qca. random numbers have many uses in science, art, statistics, cryptography, gaming, gamblin...
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...
Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...
Quantum-dot Cellular Automata (QCA) is a promising, emerging nanotechnology based on single electron effects in quantum dots and molecules. While many logic implementations based on QCA devices have been proposed in literature [6, 7, 8], the inherent cellular structure of QCA cells make it a natural candidate for Cellular Automata (CA) implementation. CA offers regularity and modularity to the ...
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of 39204 nm2. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید