نتایج جستجو برای: purely non abelian group
تعداد نتایج: 2188777 فیلتر نتایج به سال:
We study essentially non-Abelian backgrounds in the five dimensional N=4 gauged SU(2)×U(1) supergravity. Static configurations that are invariant under either the SO(4) spatial rotations or with respect to the SO(3) rotations and translations along the fourth spatial coordinate are considered. By analyzing consistency conditions for the equations for supersymmetric Killing spinors we derive the...
this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...
It is shown that a gauged nonlinear O(3) sigma model with anomalous magnetic moment interaction in 2 + 1 dimensions is exactly integrable for static, self-dual field configurations. The matter fields are exactly equivalent to those of the usual ungauged nonlinear O(3) sigma model. These static soliton solutions can be mapped into an Abelian purely magnetic vortex solutions through a suitable re...
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...
The random vector potential model describes massless fermions coupled to a quenched random gauge field. We study its abelian and non-abelian versions. The abelian version can be completely solved using bosonization. We analyse the non-abelian model using its su-persymmetric formulation and show, by a perturbative renormalisation group computation, that it is asymptotically free at large distanc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید