نتایج جستجو برای: pso based optimization
تعداد نتایج: 3130192 فیلتر نتایج به سال:
Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method developed in 1995 by Eberhart and Kennedy based on the social behaviors of birds flocking or fish schooling. A number of basic variations have been developed due to improve speed of convergence and quality of solution found by the PSO. On the other hand, basic PSO is more appropriate to pro...
in this paper, a new enhanced version of the particle swarm optimization (pso) is presented. an important modification is made by adding probabilistic functions into pso, and it is named probabilistic particle swarm optimization (ppso). since the variation of the velocity of particles in pso constitutes its search engine, it should provide two phases of optimization process which are: explorati...
The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust an...
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
Particle Swarm Optimization (PSO) is a population based heuristic search method for finding global optimal values in multi-disciplinary design optimization problems. PSO is based on simple social behavior exhibited by birds and insects. Due to its simplicity in implementation, PSO has been increasingly gaining popularity in the optimization community. Previous work by the authors demonstrated s...
Abstract— The aim of this paper is to study the tuning of a PID controller using swarm optimization techniques. In this paper, comparative performance of PSO and BF-PSO based PID controller is analyzed. PSO algorithm converges rapidly during the initial stages of a global search, but around global optimum, the search process slows down. In order to overcome this problem and to further enhance t...
Many scientific, engineering and economic problems involve optimization. In reaction to that, numerous optimization algorithms have been proposed. Particle Swarm Optimization (PSO) is a new paradigm of Swarm Intelligence which is inspired by concepts from ’Social Psychology’ and ’Artificial Life’. Essentially, PSO proposes that the co-operation of individuals promotes the evolution of the swarm...
The Particle Swarm Optimization (PSO) Algorithm is one of swarm intelligence optimization algorithms. Usually the population’s values of PSO algorithm are random which leads to random distribution of search quality and search velocity. This paper presents PSO based on uniform design (UD). UD is widely used in various applications and introduced to generate an initial population, in which the po...
Particle swarm optimization (PSO) has been widely used in optimization problems. If an identification problem can be transformed into an optimization problem, PSO can be used to identify the unknown parameters in a nonlinear model that is used to describe a system. Currently, most PSO based identification or optimization solutions can only be implemented offline. The difficulties of online impl...
there are many approaches for solving variety combinatorial optimization problems (np-compelete) that devided to exact solutions and approximate solutions. exact methods can only be used for very small size instances due to their expontional search space. for real-world problems, we have to employ approximate methods such as evolutionary algorithms (eas) that find a near-optimal solution in a r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید