نتایج جستجو برای: power law fluid

تعداد نتایج: 832162  

2016
Fang-Bao Tian

An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The no...

Alireza Solaimany Nazar Mohammad Illbeigi

The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...

2010
Renato A. Silva Maximilian S. Mesquita

In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for nonNewtonian fluid.

In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...

Afrsiab Raisi Afshin Ahmadi Nadooshan, Amin Shahsavar, Rouhollah Yadollahi Farsani

Liquid paraffin can be used as a coolant fluid in electronic and cutting devices due to its suitable capabilities such as electrical insulating, high heat capacity, chemical, and thermal stability, and high boiling point. In this study, the dynamic viscosity of paraffin containing the alumina nanoparticles has been examined experimentally. The nanofluids with different composition of alumina (0...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2003
H J H Clercx G J F van Heijst M L Zoeteweij

The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated ...

2014
Cha ’ o - Kuang Chen Ching - Chang Cho

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model ...

2011
GABRIELLA BOGNÁR

In this paper the similarity solutions of the Prandtl boundary layer equations describing a nonNewtonian power law fluid past an impermeable flat plate, driven by a power law velocity profile ) 0 ( > = B By U σ have been investigated. It is shown that there are analytical solutions for any 2 , 0 ≠ > n n and any 0 2 / 1 < ≤ − σ . We give a method for the determination of the power series solutio...

The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...

1998
Andrew R. Liddle Robert J. Scherrer

An attractive method of obtaining an effective cosmological constant at the present epoch is through the potential energy of a scalar field. Considering models with a perfect fluid and a scalar field, we classify all potentials for which the scalar field energy density scales as a power law of the scale factor when the perfect fluid density dominates. There are three possibilities. The first tw...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید