نتایج جستجو برای: perfect ring
تعداد نتایج: 168366 فیلتر نتایج به سال:
a module $m$ is said to be coretractable if there exists a nonzero homomorphism of every nonzero factor of $m$ into $m$. we prove that all right (left) modules over a ring are coretractable if and only if the ring is morita equivalent to a finite product of local right and left perfect rings.
In this work, we investigate the transfer of some homological properties from a ring $R$ to its amalgamated duplication along some ideal $I$ of $R$ $Rbowtie I$, and then generate new and original families of rings with these properties.
an r-module m is called epi-retractable if every submodule of mr is a homomorphic image of m. it is shown that if r is a right perfect ring, then every projective slightly compressible module mr is epi-retractable. if r is a noetherian ring, then every epi-retractable right r-module has direct sum of uniform submodules. if endomorphism ring of a module mr is von-neumann regular, then m is semi-...
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
inspired by a recent work of buchweitz and flenner, we show that, for a semidualizing bimodule $c$, $c$--perfect complexes have the ability to detect when a ring is strongly regular.it is shown that there exists a class of modules which admit minimal resolutions of $c$--projective modules.
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
Let R be a perfect ring of characteristic p. We show that the group of continuous R-linear automorphisms of the perfect power series ring over R is generated by the automorphisms of the ordinary power series ring together with Frobenius; this answers a question of Jared Weinstein.
an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید