نتایج جستجو برای: organizing map som neural networks finally
تعداد نتایج: 1198270 فیلتر نتایج به سال:
The Self-Organizing Map (SOM) has shown to be a stable neural network model for highdimensional data analysis. However, its applicability is limited by the fact that some knowledge about the data is required to define the size of the network. In this paper the Growing Hierarchical SOM (GHSOM) is proposed. This dynamically growing architecture evolves into a hierarchical structure of self–organi...
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
The Artificial Neural Networks method is applied on visual working efficiency of cockpit. A Self-Organizing Map (SOM) network is demonstrated selecting material with near properties. Then a Back-Propagation (BP) network automatically learns the relationship between input and output. After a set of training, the BP network is able to estimate material characteristics using knowledge and criteria...
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
Self-organizing maps, SOMs, are a data visualization technique developed to reduce the dimensions of data through the use of self-organizing neural networks. However, as the original input manifold can be complicated with an inherent dimension larger than that of the feature map, the dimension reduction in SOM can be too drastic, generating a folded feature map. In order to eliminate this pheno...
Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...
Image segmentation is a very crucial step in the field of image processing which helps us to simplify the representation of the image, to make it easier to analyze. This paper deals with the comparison of image segmentation techniques based on unsupervised artificial neural network technique, known as Kohonen’s Self Organizing Maps (SOM). We first present image segmentation using Kohonen’s Self...
We propose a neural preprocess approach for video-based gesture recognition system. Second-order neural network (SONN) and self-organizing map (SOM) are employed for extracting moving hand regions and for normalizing motion features respectively. The SONN is more robust to noise than frame difference technique. Obtained velocity feature vectors are translated into normalized feature space by th...
pollution deriving from trace elements (cd, cu, ni, pb, zn, hg, as and cr) in sediment samples(collected in 2009), belonging to rivers located in catalonia and the basque country (spain), was assessedaccording to sediment quality guidelines. sediment samples were ranked in terms of a pollution index thattakes into account the presence of multiple pollutants such as trace elements. while only ab...
Artificial neural networks (ANNs) have found widespread application in human image processing systems, but often they play only a small part in a large complex process. We investigate the Self-Organizing Map or SOM, a particular type of unsupervised ANN, as a core image processing component, by applying the standard SOM to the common tasks of image quantisation, skin detection and feature locat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید