نتایج جستجو برای: noetherian spectrum
تعداد نتایج: 225543 فیلتر نتایج به سال:
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
In this note, we show how abstract localization and graded versions of the Artin-Rees property may be applied to construct structure sheaves over the projective spectrum Proj(R) of a graded fully bounded noetherian ring R.
We present several results related to van Douwen’s Problem, which asks whether there is homogeneous compactum with cellularity exceeding c, the cardinality of the reals. For example, just as all known homogeneous compacta have cellularity at most c, they satisfy similar upper bounds in terms of Peregudov’s Noetherian type and related cardinal functions defined by order-theoretic base properties...
Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...
We study classes of modules over a commutative ring which allow to do homological algebra relative to such a class. We classify those classes consisting of injective modules by certain subsets of ideals. When the ring is Noetherian the subsets are precisely the generization closed subsets of the spectrum of the ring.
We prove the existence of various adelic-style models for rigidly small-generated tensor-triangulated categories whose Balmer spectrum is a one-dimensional Noetherian topological space. This special case our general programme giving adelic particularly concrete and accessible, we illustrate it with examples from algebra, geometry, topology representation theory.
In Bishop-style constructive algebra it is known that if a module over a commutative ring has a Noetherian basis function, then it is Noetherian. Using countable choice we prove the reverse implication for countable and strongly discrete modules. The Hilbert basis theorem for this specific class of Noetherian modules, and polynomials in a single variable, follows with Tennenbaum’s celebrated ve...
We study the “q-commutative” power series ring R := kq[[x1, . . . , xn]], defined by the relations xixj = qijxjxi, for mulitiplicatively antisymmetric scalars qij in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In par...
Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...
we define and studyco-noetherian dimension of rings for which the injective envelopeof simple modules have finite krull-dimension. this is a moritainvariant dimension that measures how far the ring is from beingco-noetherian. the co-noetherian dimension of certain rings,including commutative rings, are determined. it is shown that the class ${mathcal w}_n$ of rings with co-noetherian dimension...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید