نتایج جستجو برای: negative matrix factorization

تعداد نتایج: 893574  

Journal: :Algorithms 2022

Classification and topic modeling are popular techniques in machine learning that extract information from large-scale datasets. By incorporating a priori such as labels or important features, methods have been developed to perform classification tasks; however, most can both do not allow for guidance of the topics features. In this paper, we propose novel method, namely Guided Semi-Supervised ...

ژورنال: :فصل نامه علمی پژوهشی مهندسی پزشکی زیستی 2011
امیر حسین اسکندری احسان صداقت نژاد سید جواد موسوی محسن اصغری محمد پرنیان پور

انتخاب الگوی فعال شدن عضلات برای رسیدن به یک هدف خاص به علت پیچیدگی های سیستم اسکلتی عضلانی و نحوه غلبه سیستم اعصاب مرکزی به این پیچیدگی ها، چندین دهه مورد علاقه محققان در این زمینه بوده است. یکی از پاسخ هایی که در این زمینه مطرح شده است، وجود واحدهای (سینرجی) ساده ایست که از ترکیب آن هافعالیت های پیچیده صورت می پذیرند.در این تحقیق وجود و همچنین نحوه آرایش این سینرجی ها در ناحیه کمر مورد بررسی ...

2009
Mikkel N. Schmidt Ole Winther Lars Kai Hansen

We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model ...

Journal: :ITM web of conferences 2022

Abstract—What matrix factorization methods do is reduce the dimensionality of data without losing any important information. In this work, we present Non-negative Matrix Factorization (NMF) method, focusing on its advantages concerning other factorization. We discuss main optimization algorithms, used to solve NMF problem, and their convergence. The paper also contains a comparative study betwe...

2010
Lijun ZHANG Zhengguang CHEN Miao ZHENG Xiaofei HE

Non-negative matrix factorization (NMF) is a recently popularized technique for learning partsbased, linear representations of non-negative data. The traditional NMF is optimized under the Gaussian noise or Poisson noise assumption, and hence not suitable if the data are grossly corrupted. To improve the robustness of NMF, a novel algorithm named robust nonnegative matrix factorization (RNMF) i...

2013
Koh Takeuchi Katsuhiko Ishiguro Akisato Kimura Hiroshi Sawada

Non-negative Matrix Factorization (NMF) is a traditional unsupervised machine learning technique for decomposing a matrix into a set of bases and coefficients under the non-negative constraint. NMF with sparse constraints is also known for extracting reasonable components from noisy data. However, NMF tends to give undesired results in the case of highly sparse data, because the information inc...

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

2010
Fang Li Qunxiong Zhu

In non-negative matrix factorization, it is difficult to find the optimal non-negative factor matrix in each iterative update. However, with the help of transformation matrix, it is able to derive the optimal non-negative factor matrix for the transformed cost function. Transformation matrix based nonnegative matrix factorization method is proposed and analyzed. It shows that this new method, w...

2003
Sven Behnke

Discovering a representation that reflects the structure of a dataset is a first step for many inference and learning methods. This paper aims at finding a hierarchy of localized speech features that can be interpreted as parts. Non-negative matrix factorization (NMF) has been proposed recently for the discovery of parts-based localized additive representations. Here, I propose a variant of thi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید