نتایج جستجو برای: n clean ring
تعداد نتایج: 1102529 فیلتر نتایج به سال:
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring Mn(R) is strongly clean for each integer n > 0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is ...
Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...
The classes of clean and nil-clean rings are closed with respect standard constructions as direct products and (triangular) matrix rings, cf. [12] resp. [4], while the classes of weakly (nil-)clean rings are not closed under these constructions. Moreover, while all matrix rings over fields are clean, [12] when we consider nil-clean rings there are strongly restrictions: if a matrix ring over a ...
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
It is well known that every uniquely clean ring is strongly clean. In this paper, we investigate the question of when this result holds element-wise. We first construct an example showing that uniquely clean elements need not be strongly clean. However, in case every corner ring is clean the uniquely clean elements are strongly clean. Further, we classify the set of uniquely clean elements for ...
A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute with each other. A recent result of Borooah, Diesl and Dorsey [3] completely characterized the commutative local rings R for which Mn(R) is strongly clean. For a general local ring R and n > 1, however, it is unknown when the matrix ring Mn(R) is strongly clean. Here we completely determi...
A ring $R$ is a strongly clean ring if every element in $R$ is the sum of an idempotent and a unit that commutate. We construct some classes of strongly clean rings which have stable range one. It is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید