نتایج جستجو برای: myogenic regulatory factors
تعداد نتایج: 1238137 فیلتر نتایج به سال:
It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To veri...
The muscle creatine kinase (MCK) enhancer was used as a target to study the specificity of DNA binding and trans-activation by members of the helix-loop-helix (HLH) family of myogenic regulatory factors, MyoD1, myogenin, myf-5, and MRF4. Whereas all four myogenic factors bound with similar affinities to the MCK enhancer in the presence of the widely expressed HLH protein E12, only MyoD1, myogen...
Four myogenic regulatory factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin direct muscle tissue differentiation. Heterodimers of MRFs with E-proteins activate muscle-specific gene expression by binding to E-box motifs d(CANNTG) in their promoters or enhancers. We showed previously that in contrast to the favored binding of E-box by MyoD-E47 heterodimers, homodimeric MyoD associated preferentially ...
Whole body vibration training is widely used in rehabilitation and sports activities to improve muscle strength, balance, and flexibility. However, the molecular mechanisms of vertical vibration (VV) training and their effect on the myogenesis of myoblasts remain undefined. This study was undertaken to address the hypothesis that VV can enhance the expression of ECM proteins and myogenic regula...
The Caenorhabditis elegans protein, CeMyoD, is related to the vertebrate myogenic regulatory factors MyoD, myogenin, MRF-4 and Myf-5. Like its vertebrate counterparts, CeMyoD accumulates in the nucleus of striated muscle cells prior to the onset of terminal differentiation. CeMyoD also shares functional similarities with the vertebrate myogenic regulatory factors. Viral LTR driven expression of...
The circadian clock network is an evolutionarily conserved mechanism that imparts temporal regulation to diverse biological processes. Brain and muscle Arnt-like 1 (Bmal1), an essential transcriptional activator of the clock, is highly expressed in skeletal muscle. However, whether this key clock component impacts myogenesis, a temporally regulated event that requires the sequential activation ...
The transcriptional regulatory network that controls the determination and differentiation of skeletal muscle cells in the embryo has at its core the four myogenic regulatory factors (MRFs) Myf5, MyoD, Mrf4 and MyoG. These basic helix-loop-helix transcription factors act by binding, as obligate heterodimers with the ubiquitously expressed E proteins, to the E-box sequence CANNTG. While all skel...
Myocyte differentiation is due to transcription of genes that characterize the phenotypic and biochemical identity of differentiated muscle cells. These are the myogenic regulatory factors (MRFs) MyoD, Myf5, myogenin and MRF4. Overexpression of cdk/cyclins has been reported to inhibit the activity of MyoD and prevent myogenic differentiation by different modalities. Unlike other cdk/cyclin comp...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید