نتایج جستجو برای: multiplicative zagreb index
تعداد نتایج: 411227 فیلتر نتایج به سال:
For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M1(G) = ∑ v∈V (G) dG(v) 2 where dG(v) is the degree of vertex v in G. The alternative expression for M1(G) is ∑ uv∈E(G)(dG(u)+dG(v)). Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant ∏∗ 1(G) = ∏ uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of ...
For a (molecular) graph, the multiplicative Zagreb indices ∏ 1-index and ∏ 2index are multiplicative versions of the ordinary Zagreb indices (M1-index and M2index). In this note we report several sharp upper bounds for ∏ 1-index in terms of graph parameters including the order, size, radius, Wiener index and eccentric distance sum, and upper bounds for ∏ 2-index in terms of graph parameters inc...
let g=(v,e) be a simple connected graph with vertex set v and edge set e. the first, second and third zagreb indices of g are respectivly defined by: $m_1(g)=sum_{uin v} d(u)^2, hspace {.1 cm} m_2(g)=sum_{uvin e} d(u).d(v)$ and $ m_3(g)=sum_{uvin e}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in g and uv is an edge of g connecting the vertices u and v. recently, the first and second m...
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...
In this paper, we present the exact formulae for the multiplicative version of degree distance and the multiplicative version of Gutman index of strong product of graphs in terms of other graph invariants including the Wiener index and Zagreb index. Finally, we apply our results to the multiplicative version of degree distance and the multiplicative version of Gutman index of open and closed fe...
The first Zagreb index of a graph G, with vertex set V (G) and edge set E(G), is defined as M1(G) = ∑ u∈V (G) d(u) 2 where d(u) denotes the degree of the vertex v. An alternative expression for M1(G) is ∑ uv∈E(G)[d(u) + d(v)]. We consider a multiplicative version of M1 defined as Π∗1(G) = ∏ uv∈E(G)[d(u) + d(v)]. We prove that among all connected graphs with a given number of vertices, the path ...
A connected graph G is said to be a cactus if any two cycles have at most one vertex in common. The multiplicative sum Zagreb index of the product degrees adjacent vertices G. In this paper, we introduce several transformations that are useful tools for study extremal properties index. Using these and symmetric structural representations some graphs, determine graphs having maximal with prescri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید