نتایج جستجو برای: mopso algorithm
تعداد نتایج: 754185 فیلتر نتایج به سال:
Flexible skin and continuous deformable control surface are the basic of adaptive wing technology for future aircraft. This paper presents a morphing trailing-edge its allocation method flying Unmanned Aerial Vehicle (UAV). Firstly, we apply Kriging to establish aerodynamic model trailing-edge, with initial sample points generated by non-uniform optimal Latin Hypercube Sampling (LHS). Then, bas...
This paper presents a new multi-objective optimization algorithm in which multi-swarm cooperative strategy is incorporated into particle swarm optimization algorithm, called multi-swarm cooperative multi-objective particle swarm optimizer (MC-MOPSO). This algorithm consists of multiple slave swarms and one master swarm. Each slave swarm is designed to optimize one objective function of the mult...
In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization (MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This adaptiveness helps the algorithm to explore the s...
This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, mult...
Constraint handling techniques are mainly designed for evolutionary algorithms to solve constrained multiobjective optimization problems (CMOPs). Most multiojective particle swarm optimization (MOPSO) designs adopt these existing constraint handling techniques to deal with CMOPs. In the proposed constrained MOPSO, information related to particles’ infeasibility and feasibility status is utilize...
Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regress...
This paper presents an application of an evolutionary optimization algorithm for multiobjective analysis for reservoir operations and planning. A multiobjective particle swarm optimization (MOPSO) algorithm is used to find nondominated solutions with four objectives: (i) maximize annual firm water supply; (ii) maximize annual firm energy production; (iii) minimize flood risk; and (iv) maximize ...
This paper presents a new multi objective heuristic algorithm for Dynamic Economic Load Dispatch (DELD) problem soultion with transmission losses based on new version of the Particle Swarm Optimization (PSO) algorithm, which called Multi Objective PSO (MOPSO) method. The proposed algorithm is based on multi objective meta-heuristics technique that evaluates a set of the Pareto solutions systema...
Applying multi-objective particle swarm optimization (MOPSO) algorithm to multi-objective design of multimachine power system stabilizers (PSSs) is presented in this paper. The proposed approach is based on MOPSO algorithm to search for optimal parameter settings of PSS for a wide range of operating conditions. Moreover, a fuzzy set theory is developed to extract the best compromise solution. T...
Evolutionary optimization algorithms have been used to solve multiple objective problems. However, most of these methods have focused on search a sufficient Pareto front, and no efforts are made to explore the diverse Pareto optimal solutions corresponding to a Pareto front. Note that in semi-obnoxious facility location problems, diversifying Pareto optimal solutions is important. The paper the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید