نتایج جستجو برای: minimum edge geodetic set
تعداد نتایج: 897967 فیلتر نتایج به سال:
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
A vertex set D in graph G is called a geodetic set if all vertices of G are lying on some shortest u–v path of G, where u, v 2 D. The geodetic number of a graph G is the minimum cardinality among all geodetic sets. A subset S of a geodetic set D is called a forcing subset of D if D is the unique geodetic set containing S. The forcing geodetic number of D is the minimum cardinality of a forcing ...
For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u − v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u, v) for u, v ∈ S. A set S is a geodetic set if I(S) = V (G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set...
a subset $s$ of vertices in a graph $g$ is called a geodetic set if every vertex not in $s$ lies on a shortest path between two vertices from $s$. a subset $d$ of vertices in $g$ is called dominating set if every vertex not in $d$ has at least one neighbor in $d$. a geodetic dominating set $s$ is both a geodetic and a dominating set. the geodetic (domination, geodetic domination) number...
For two vertices u and v of a graph G, the closed interval I[u, v] consists of u, v, and all vertices lying in some u − v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for u, v ∈ S. If I[S] = V (G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the ...
Let G be an undirected graph with vertex and edge sets V (G) E(G), respectively. A subset S of vertices is a geodetic hop dominating set if it both set. The domination number G, γhg(G), the minimum cardinality among all in G. Geodetic resulting from some binary operations have been characterized. These characterizations used to determine tight bounds for each graphs considered.
A set S of vertices of a connected graph G is convex, if for any pair of vertices u, v ∈ S , every shortest path joining u and v is contained in S . The convex hull CH(S ) of a set of vertices S is defined as the smallest convex set in G containing S . The set S is geodetic, if every vertex of G lies on some shortest path joining two vertices in S, and it is said to be a hull set if its convex ...
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products hav...
We introduce a new graph-theoretic concept in the area of network monitoring. In this area, one wishes to monitor vertices and/or edges (viewed as graph) order detect and prevent failures. Inspired by two notions studied literature (edge-geodetic sets distance-edge-monitoring sets), we define notion monitoring edge-geodetic set (MEG-set for short) graph G an $$S\subseteq V(G)$$ (that is, every ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید