نتایج جستجو برای: metric dimension

تعداد نتایج: 189267  

Journal: :Proceedings of the American Mathematical Society 1965

Journal: :Carpathian Mathematical Publications 2019

Journal: :Proceedings of the American Mathematical Society 1978

Journal: :Ars Mathematica Contemporanea 2018

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

Journal: :iranian journal of science and technology (sciences) 2008
b. najafi

we prove that every r-quadratic metric of scalar flag curvature with a dimension greater than twois of constant flag curvature. then we show that generalized douglas-weyl metrics contain r-quadraticmetrics as a special case, but the class of r-quadratic metric is not closed under projective transformations

Journal: :Discrete Applied Mathematics 2013
Delia Garijo Antonio González Herrera Alberto Márquez

This paper deals with three resolving parameters: the metric dimension, the upper dimension and the resolving number. We first answer a question raised by Chartrand and Zhang asking for a characterization of the graphswith equalmetric dimension and resolving number. We also solve in the affirmative a conjecture posed by Chartrand, Poisson and Zhang about the realization of the metric dimension ...

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

2002
Eric Olson ERIC OLSON

In this paper we present some new properties of the metric dimension defined by Bouligand in 1928 and prove the following new projection theorem: Let dimb(A − A) denote the Bouligand dimension of the set A − A of differences between elements of A. Given any compact set A ⊆ R such that dimb(A−A) < m, then almost every orthogonal projection P of A of rank m is injective on A and P |A has Lipschit...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید