نتایج جستجو برای: mean square error mse

تعداد نتایج: 884631  

2013
S. KARTHIKEYAN P. GANESH KUMAR S. SASIKUMAR

A system model for DS-CDMA (Direct Sequence Code Division Multiple Access) is described in its basic form and performance measure based on Mean Square Error (MSE) and Symbol Error Rate (SER) under Additive White Gaussian Noise is performed. For measuring the performance of DS-CDMA receivers, the channel estimate plays for a crucial role and hence the channel estimation for DS-CDMA is considered...

1996
Delman Lee

| A lower bound on the mean square error (MSE) of image reconstruction in emission tomography is obtained and used in the evaluation of diierent image approximations. One component of the lower bound on the MSE is the Cram er-Rao (CR) bound on the error variance. The CR bound for diierent image approximations is derived by knowing how the CR bound is modiied when one is interested in some funct...

2014
Hala M. Abd Elkader Gamal Mabrouk Reham S. Saad

In this paper, we present performance of pilot based channel estimation techniques such as Least Squares (LS) and Linear Minimum Mean Square Error (LMMSE) for different interpolation methods and modulation schemes. The performance is evaluated using the mean squared error (MSE) as the performance metric of interest for downlink LTE system. Simulation results show that for low SNR environment, a...

1998
William Edmonson Jose Principe Kannan Srinivasan Chuan Wang

In this brief, we develop an least mean square (LMS) algorithm that converge in a statistical sense to the global minimum of the mean square error (MSE) objective function. This is accomplished by estimating the gradient as a smoothed version of the MSE. The smoothed MSE objective begins as a convex functional in the mean. The amount of dispersion or smoothing is reduced, such that over time it...

2013
Taher Ben Arab Afif Masmoudi Mourad Zribi

In this paper, we introduce the diagonal of the modified Riesz distribution defined in 2 , IR  r r . We propose the estimators of different parameters of this new distribution by two method, firstly by the moment method and secondly by the maximum likelihood method. The performance of the both estimators are studied by calculating the Mean Square Error (MSE). KeywordsDiagonal of the modified R...

2015
Mahmud Hasan Mahmoud R. El-Sakka

Wiener filter is widely used for image denoising and restoration. It is alternatively known as the minimum mean square error filter or the least square error filter, since the objective function used in Wiener filter is an age-old benchmark called the Mean Square Error (MSE). Wiener filter tries to approximate the degraded image so that its objective function is optimized. Although MSE is consi...

2008
Zhenhua Guo Hong Wang

Component extraction is a technique for extracting the latent components that underlie the observation of a set of variables. In the paper both classical Principal component analysis (PCA) and autoassociative principal component neural network (PCNN) methods with minimum mean square error (MSE) criterion are compared with the corresponding extended component extraction methods with Minimum erro...

2015
M. PremKumar M. P. Chitra

This paper mathematically proposes channel estimation algorithms for Cognitive Radio (CR) in terms of Mean Square Error (MSE) and analysis of its Bit Error Rate (BER) performance. As cognitive radio associates itself with the family of opportunistic communication for using frequency spectrum efficiently, issues such as spectrum sensing and channel estimation gain attention. When the main issue ...

2010
Ming Li Jia-Yue Li Cristian Toma

This paper points out that the predictability analysis of conventional time series may in general be invalid for long-range dependent LRD series since the conventional mean-square error MSE may generally not exist for predicting LRD series. To make the MSE of LRD series prediction exist, we introduce a generalized MSE. With that, the proof of the predictability of LRD series is presented in Hil...

Journal: :CoRR 2015
Wentao Ma Hua Qu Badong Chen Ji-hong Zhao Jiandong Duan

Robust diffusion algorithms based on the maximum correntropy criterion(MCC) are developed to address the distributed networks estimation issue in impulsive(long-tailed) noise environments. The cost functions used in distributed network estimation are in general based on the mean square error (MSE) criterion, which is optimal only when the measurement noise is Gaussian. In non-Gaussian situation...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->