نتایج جستجو برای: maximal non prime ideal

تعداد نتایج: 1501310  

Journal: :international journal of group theory 2016
cui zhang

the theorem 12 in [a note on $p$-nilpotence and solvability of finite groups, j. algebra 321(2009) 1555--1560.] investigated the non-abelian simple groups in which some maximal subgroups have primes indice. in this note we show that this result can be applied to prove that the finite groups in which every non-nilpotent maximal subgroup has prime index aresolvable.

Reza Jahani-Nezhad,

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...

Journal: :journal of algebra and related topics 0
i. akray soran university

in this paper, we introduce a new generalization of weakly prime ideals called $i$-prime. suppose $r$ is a commutative ring with identity and $i$ a fixed ideal of $r$. a proper ideal $p$ of $r$ is $i$-prime if for $a, b in r$ with $ab in p-ip$ implies either $a in p$ or $b in p$. we give some characterizations of $i$-prime ideals and study some of its properties.  moreover, we give conditions  ...

Journal: :bulletin of the iranian mathematical society 2015
a. a. ‎estaji a. ‎karimi feizabadi m. abedi

in this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. we study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. for strongly z-ideals, we analyze prime ideals using the concept of zero sets. moreover, it is proven that the intersection of all zero sets of a prime ideal of c(l),...

The minimal prime decomposition for semiprime ideals is defined and studied on z-ideals of C(X). The necessary and sufficient condition for existence of the minimal prime decomposition of a z-ideal / is given, when / satisfies one of the following conditions: (i) / is an intersection of maximal ideals. (ii) I is an intersection of O , s, when X is basically disconnected. (iii) I=O , when x X h...

Journal: :journal of sciences islamic republic of iran 0

the minimal prime decomposition for semiprime ideals is defined and studied on z-ideals of c(x). the necessary and sufficient condition for existence of the minimal prime decomposition of a z-ideal / is given, when / satisfies one of the following conditions: (i) / is an intersection of maximal ideals. (ii) i is an intersection of o , s, when x is basically disconnected. (iii) i=o , when x x ha...

In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...

2005
R. R. LAXTON

The concepts of a prime ideal of a distributively generated (d.g.) nearring R, a prime d.g. near-ring and an irreducible R-group are introduced1). The annihilating ideal of an irreducible R-group with an R-generator is a prime ideal. Consequently we define a prime ideal to be primitively prime if it is the annihilating ideal of such an R-group, and a d.g. near-ring to be a primitively prime nea...

In this paper, we introduce a method by which we can find a close connection between the set of prime $z$-ideals of $C(X)$ and the same of $C(Y)$, for some special subset $Y$ of $X$. For instance, if $Y=Coz(f)$ for some $fin C(X)$, then there exists a one-to-one correspondence between the set of prime $z$-ideals of $C(Y)$ and the set of prime $z$-ideals of $C(X)$ not containing $f$. Moreover, c...

Journal: :bulletin of the iranian mathematical society 2011
a. aliabad m. badie

in this paper, we introduce a method by which we can find a close connection between the set of prime $z$-ideals of $c(x)$ and the same of $c(y)$, for some special subset $y$ of $x$. for instance, if $y=coz(f)$ for some $fin c(x)$, then there exists a one-to-one correspondence between the set of prime $z$-ideals of $c(y)$ and the set of prime $z$-ideals of $c(x)$ not containing $f$. moreover, c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید