نتایج جستجو برای: magnetite fe3o4 nanoparticlesag
تعداد نتایج: 9532 فیلتر نتایج به سال:
A magnetic chitosan-polypyrrole-magnetite (Cs-PPy-Fe3O4) nanocomposite is prepared in a simple one-step method via in situ chemical polymerization of pyrrole using anhydrous FeCl3 as an oxidant in the presence of Cs. Magnetic Fe3O4 nanoparticles of size in the range of 10-20 nm are successfully introduced into the Cs-PPy matrix. Adsorption of an anionic dye (acid green 25, AG) from aqueous solu...
Abstract. The magnetic properties of magnetite nanoparticles and magnetite-thermoplastic natural rubber (TPNR) nanocomposites was prepared by melt-blending method has been studied using vibrating sample magnetometer (VSM). The saturation magnetization (MS), remanence (MR), squareness (MR/MS), coercivity (HC) and exchange-bias field (Heb) for magnetite nanoparticles and its nanocomposites increa...
Magnetite Fe3O4 is one of the most stable carriers of natural remanent magnetization (NRM) in sedimentary rocks, and paleomagnetic studies of magnetite-bearing sediments, such as deep-sea cores and pelagic limestones, have provided a detailed calibration between the biostratigraphic and magnetic polarity time scales. Despite this important role, there is as yet a very poor understanding of how ...
this study aims at exploring an effective route in the in situ graft polymerization of aniline from fe3o4 nanoparticles. to this goal, fe3o4 magnetic nanoparticles were prepared by coprecipitation method using ammonia solution as the precipitating agent, and were characterized by fourier transform infrared (ft-ir) spectroscopy, x-ray diffraction (xrd) and transmission electron microscopy (tem)....
The study of the paleomagnetic signal recorded by rocks allows scientists to understand Earth's past magnetic field and the formation of the geodynamo. The magnetic recording fidelity of this signal is dependent on the magnetic domain state it adopts. The most prevalent example found in nature is the pseudo-single-domain (PSD) structure, yet its recording fidelity is poorly understood. Here, th...
the magnetite (fe3o4) – agar nanocomposite was prepared by co-precipitation of fe (iii) and fe (ii) ions for the first time. the obtained samples were characterized by x-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. ft-ir results confirm the formation of fe3o4 nanoparticles in agar matrix. the xrd results revealed th...
In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), ...
In this study, magnetite (Fe3O4) nanoparticles were synthesized by chemical co-precipitation from the solution containing iron salts in alkaline medium under N2 gas and room temperature. Magnetite nanoparticles were characterized by X- ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravim...
Studies of the angular dependence of the anisotropic magnetoresistance (AMR) are reported for epitaxial films of magnetite (Fe3O4) grown on MgO (001) and also for single crystals of magnetite. The characteristic feature of the AMR is a two-fold symmetry at temperatures above 200 K. As the samples are cooled below 200 K, an additional set of peaks appears. These become dominant at lower temperat...
Covalent linkage of oleic acid ligated Fe3O4 spheres (9 nm) with sheetlike [H1-xCa2Nb3O10] particles (300 x 300 x 2 nm) yields, depending on conditions, submicro- or microscale stacks, which on their surfaces are decorated with magnetite nanoparticles. Due to the optical anisotropy of the sheetlike Ca2Nb3O10 building blocks and due to the superparamagnetic nature of the Fe3O4 components, the na...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید