نتایج جستجو برای: machine models

تعداد نتایج: 1124872  

Journal: :international journal of nano dimension 0
m. sahooli nano chemical eng. dep., faculty of advanced technologies, shiraz university, shiraz, iran. s. sabbaghi nano chemical eng. dep., faculty of advanced technologies, shiraz university, shiraz, iran. r. maleki nano chemical eng. dep., faculty of advanced technologies, shiraz university, shiraz, iran. m. m. nematollahi school of electrical and computer engineering, shiraz university, shiraz, iran.

statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. this paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. the thermal conductivity of nanofluids increases with the volume fraction and temperature. machine learni...

Journal: :journal of quality engineering and production optimization 2015
amir hossein parsamanesh rashed sahraeian

despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. this paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (mip) models to solve thisproblem. these models have been formulated for the classical single machine problem, namely sequ...

M. M. Nematollahi M. M. Zerafat M. Shariaty-Niassar R. Maleki S. Sabbaghi

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

ژورنال: محاسبات نرم 2019

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

Afsane Heidari Hanieh Malekzadeh Mohammad Hossein Fatemi,

In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...

ژورنال: اندیشه آماری 2020

In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید