نتایج جستجو برای: local fractional calculus
تعداد نتایج: 645580 فیلتر نتایج به سال:
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
in this paper, we consider the second-kind chebyshev polynomials (skcps) for the numerical solution of the fractional optimal control problems (focps). firstly, an introduction of the fractional calculus and properties of the shifted skcps are given and then operational matrix of fractional integration is introduced. next, these properties are used together with the legendre-gauss quadrature fo...
Non-local kinetic problems spanning a wide area of where fractional calculus is applicable have been analyzed. Classical kinetics based on the Continuum Time Random Walk diffusion model with absence stationary states, real-world from pharmacokinetics, and modern material processing reviewed. Fractional allometry has considered potential application. The main focus in analysis paid to memory fun...
Fractional calculus is the generalization of integer-order calculus to rational order. This subject has at least three hundred years of history. However, it was traditionally regarded as a pure mathematical field and lacked real world applications for a very long time. In recent decades, fractional calculus has re-attracted the attention of scientists and engineers. For example, many researcher...
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
The widely used backpropagation algorithm based on stochastic gradient descent suffers from typically slow convergence to either local or global minimum error. This backpropagation algorithm bears great resemblance to a classic proportional integral derivative (PID) control system. Fractional calculus shows promise for improving stability and response in feedback control through the use of non-...
fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order.the purpose of this work is to use hadamard fractional integral to establish some new integral inequalities of gruss type by using one or two parameters which ensues four main results . furthermore, other integral inequalities of reverse m...
Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for th...
Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید