نتایج جستجو برای: lie triple higher derivation
تعداد نتایج: 1100142 فیلتر نتایج به سال:
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and...
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
let be a banach algebra. let be linear mappings on . first we demonstrate a theorem concerning the continuity of double derivations; especially that all of -double derivations are continuous on semi-simple banach algebras, in certain case. afterwards we define a new vocabulary called “-higher double derivation” and present a relation between this subject and derivations and finally give some ...
let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the center of $mathcal{a}$. a sequence ${l_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{a}$ with $l_{0}=i$, where $i$ is the identity mapping on $mathcal{a}$, is called a lie higher derivation if $l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in mathcal{a}$ and all $ngeqslant0$. we show that ${l_{n}}_{n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید