نتایج جستجو برای: levenberg marquardt

تعداد نتایج: 2083  

2006
G. A. Watson

The problem is considered of the estimation of a polygonal region in two dimensions from data approximately marking the outline of the region. A solution is sought by formulating and solving a nonlinear least squares problem. A Levenberg–Marquardt method is developed for this problem, with an implementation which exploits the special structure so that the Levenberg–Marquardt step can be compute...

Journal: :Journal of chemical information and modeling 2006
Mati Karelson Dimitar A. Dobchev Oleksandr V. Kulshyn Alan R. Katritzky

An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algor...

2009
Pedro Davalos

1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...

1997
MARTIN HANKE

The rst part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fr echet derivative of the nonlinear operator at the exact solu...

Journal: :EURASIP Journal on Advances in Signal Processing 2021

Abstract In this paper, we propose a distributed algorithm for sensor network localization based on maximum likelihood formulation. It relies the Levenberg-Marquardt where computations are among different computational agents using message passing, or equivalently dynamic programming. The resulting provides good accuracy, and it converges to same solution as its centralized counterpart. Moreove...

Journal: :Symmetry 2023

This paper presents a tensor approximation algorithm, based on the Levenberg–Marquardt method for nonlinear least square problem, to decompose large-scale tensors into sum of products vector groups given scale, or obtain low-rank without losing too much accuracy. An Armijo-like rule inexact line search is also introduced this algorithm. The result decomposition adjustable, which implies that ca...

2013
Nahla Farid Bassant Mohamed ELBagoury Mohamed Roushdy Abdel-Badeeh M. Salem

Abstract— Electromyography (EMG) signal provides a significant source of information for identification of neuromuscular disorders. This paper presents an application of neural network classifier on classification and identification of different normal and auto aggressive actions of hands and legs. Eight features that are extracted from eight channel EMG signals representing these actions have ...

Journal: :Comp. Opt. and Appl. 2014
Hande Y. Benson David F. Shanno

In this paper, we present a barrier method for solving nonlinear programming problems. It employs a Levenberg-Marquardt perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the Levenberg-Marquardt perturbation is equivalent to replacing the Newton step by a cubic regularization step with ...

2009
Shou-qiang Du Yan Gao Shijun Liao

For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mecha...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1389

در این نوشتار الگوریتم کنترل پیش بین غیرخطی (nmpc) مبتنی بر مدل شبکه عصبی برای سیستمهای غیرخطی چندمتغیره پیشنهاد شده است. ابتدا یک مدل چند ورودی – چند خروجی (mimo) با استفاده از شبکه عصبی پرسپترون چندلایه (mlp) بدست می آید که با الگوریتم levenberg-marquardt و سیگنالهای آموزش باینری شبه تصادفی دامنه دار (aprbs) همراه با نویز آموزش می بیند. این مدل به عنوان یک مدل کلی برای تمام نقاط کاری مورد نظر...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید