نتایج جستجو برای: legendre collocation method
تعداد نتایج: 1634661 فیلتر نتایج به سال:
A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...
In this paper, we propose an iterative spectral method for solving differential equations with initial values on large intervals. In the proposed method, we first extend the Legendre wavelet suitable for large intervals, and then the Legendre-Guass collocation points of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a s...
In this paper, we propose a natural collocation method with exact imposition of mixed boundary conditions based on a generalized Gauss-Lobatto-Legendre-Birhoff quadrature rule that builds in the underlying boundary data. We provide a direct construction of the quadrature rule, and show that the collocation method can be implemented as efficiently as the usual collocation scheme for PDEs with Di...
problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm t...
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multiorder fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is ve...
This paper is devoted to implementing the Legendre spectral collocation method to introduce numerical solutions of a certain class of fractional variational problems (FVPs). The properties of the Legendre polynomials and Rayleigh-Ritz method are used to reduce the FVPs to the solution of system of algebraic equations. Also, we study the convergence analysis. The obtained numerical results show ...
Recently, there has been an increasing interest in the study of singular and perturbed systems. In this paper we propose a collocation method for solving singularly perturbed Volterra integro-differential and Volterra integral equations. The method is based upon radial basis functions, using zeros of the shifted Legendre polynomial as the collocation points. The results of numerical experiments...
Hough functions are the eigenfunctions of the Laplace tidal equation governing fluid motion on a rotating sphere with a resting basic state. Several numerical methods have been used in the past. In this paper, we compare two of those methods: normalized associated Legendre polynomial expansion and Chebyshev collocation. Both methods are not widely used, but both have some advantages over the co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید