نتایج جستجو برای: ionic polymer metal composites
تعداد نتایج: 362333 فیلتر نتایج به سال:
Ionic polymer-metal composites ~IPMCs! consist of a polyelectrolyte membrane ~usually, Nafion or Flemion! plated on both faces by a noble metal, and is neutralized with certain counter ions that balance the electrical charge of the anions covalently fixed to the backbone membrane. In the hydrated state ~or in the presence of other suitable solvents!, the composite is a soft actuator and sensor....
Simple and highly efficient microvalve systems based on an ionic polymer-metal composite (IPMC) diaphragm actuator have been developed. The microvalve system that was fabricated in this work operates when open and close voltage is applied, due to the phenomena of lithium ion flux and the subsequent electro-osmotic drag of water to the cathode. IPMC was prepared by compositing with platinum nano...
This paper discusses a number of recent findings in connection with ion-exchange polymer-noble metal composites (IPMC) as biomimetic sensors and actuators. These smart composites exhibit characteristics of both actuators and sensors. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are...
Ionic polymer–metal composites (IPMCs) are biomimetic actuators and sensors. A typical IPMC consists of a thin perfluorinated ionomer membrane, with noble metal electrodes plated on both faces, and neutralized with the necessary amount of cations. A cantilevered strip of IPMC responds to an electric stimulus by generating large bending motions and, conversely, produces an electric potential upo...
An ionic polymer-metal composite (IPMC) consisting of a thin perfluorinated ionomer (usually, Nafion or Flemion) strip, platinum and/or gold plated on both faces, undergoes large bending motion when a small electric field is applied across its thickness. When the same membrane is suddenly bent, a small electric potential of the order of millivolts is produced across its surfaces. This actuation...
We present results for stiffness and damping prediction in a class of layered, wavy, metal–polymer composites that exceed conventionally published stiffness-damping maps (The Wang–Lakes line, see [14]). These composites are realized by judiciously placing selected, wavy, metal sheets that sandwich an ultra-thin layer of polymer. Stacks of alternating metal–polymer layered composites, when compr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید