نتایج جستجو برای: ingan
تعداد نتایج: 1955 فیلتر نتایج به سال:
Electron overflow limits the quantum efficiency of InGaN/GaN light-emitting diodes. InGaN electron cooler (EC) can be inserted before growing InGaN/GaN multiple quantum wells (MQWs) to reduce electron overflow. However, detailed mechanisms of how the InGaN EC contributes to the efficiency improvement have remained unclear so far. In this work, we theoretically propose and experimentally demonst...
This study provides a novel technique in MOVPE for growing nanometer scale InGaN QDs. Growth interruption method had been introduced into epitaxial processes of InGaN layers, and we successfully formed InGaN SAQDs with a typical lateral size of 25 nm and an average height of 4.1 nm. The QDs density is about 2×10 cm. Micro-Raman measurement reveals that samples with the nanoscale InGaN QD struct...
Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...
InGaN alloys with (0001) or (000 ) polarities are grown by plasma-assisted molecular beam epitaxy. Scanning tunneling microscopy images, interpreted using first-principles theoretical calculations, show that there is strong indium surface segregation on InGaN for both (0001) and (000 ) polarities. Evidence for the existence and stability of a structure containing two adlayers of indium on the I...
InGaN epilayers have been investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device structures reported have exhibited very low short circuit currents and thus very low solar conversion efficiency. This phenomenon has been attributed to point and extended defect chemistry in InGaN epilayers (e.g. vacancies, misfit dislocations, and V-defects...
Graded InGaN buffers were employed to relax the strain arising from the lattice and thermal mismatch in GaN/InGaN epilayers grown on sapphire. An enhanced strain relaxation was observed in GaN grown on a stack of five InGaN layers, each 200 nm thick with the In content increased in each layer, and with an intermediate thin GaN layer, 10 nm thick inserted between the InGaN layers, as compared to...
We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods...
Staggered InGaN quantum wells (QWs) are investigated both numerically and experimentally as improved active region for light-emitting diodes (LEDs) emitting at 520–525 nm. Based on a self-consistent six-band k.p method, band structures of both two-layer staggered InxGa12xN/InyGa12yN QW and three-layer staggered InyGa12yN/InxGa12xN/InyGa12yN QW structures are investigated as active region to enh...
Interdiffusion of In and Ga is observed in InGaN multiple-quantum-well superlattices for annealing temperatures of 1250 to 1400°C. Hydrostatic pressures of up to 15 kbar were applied during the annealing treatments to prevent decomposition of the InGaN and GaN. In as-grown material, x-ray diffraction spectra show InGaN superlattice peaks up to the fourth order. After annealing at 1400°C for 15 ...
We have presented broadband full-color monolithic InGaN light-emitting diodes (LEDs) by self-assembled InGaN quantum dots (QDs) using metal organic chemical vapor deposition (MOCVD). The electroluminescence spectra of the InGaN QDs LEDs are extremely broad span from 410 nm to 720 nm with a line-width of 164 nm, covering entire visible wavelength range. A color temperature of 3370 K and a color ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید