نتایج جستجو برای: increasing gauss integration points

تعداد نتایج: 954817  

2010
T. N. L. Patterson

1. Introduction. The economy of the Gaussian quadrature formulae for carrying out numerical integration is to some extent reduced by the fact that an increase in the order of the formulae makes no use of previous integrand evaluations. Kronrod [1] has shown how the Gauss formula of degree 2n — 1 can be extended to one of degree 3rc + 2 by making use of the original n Gauss points and an additio...

Journal: :نظریه تقریب و کاربرد های آن 0
jinoos nazari department of mathematics, islamic azad university, khorasgan(isfahan) branch homa almasieh department of mathematics, khorasgan (isfahan) branch, islamic azad university

in this paper, an effective technique is proposed to determine thenumerical solution of nonlinear volterra-fredholm integralequations (vfies) which is based on interpolation by the hybrid ofradial basis functions (rbfs) including both inverse multiquadrics(imqs), hyperbolic secant (sechs) and strictly positive definitefunctions. zeros of the shifted legendre polynomial are used asthe collocatio...

1996
Alan Genz

Fully symmetric interpolatory integration rules are constructed for multidimensional inte-grals over innnite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one dimensional three point Gauss-Hermite rule. The new rules are shown to be eecient and only moderately unstable.

2010
Chandrajit Bajaj

2 Numerical and Symbolic Integration 2 2.1 Cubature Formulae Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Constructing Cubature Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Interpolatory Cubature Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.2 Ideal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

2012
L. Hooshangian D. Mirzaei

This paper gives an efficient numerical method for solving the nonlinear system of Volterra-Fredholm integral equations. A Legendre-spectral method based on the Legendre integration Gauss points and Lagrange interpolation is proposed to convert the nonlinear integral equations to a nonlinear system of equations where the solution leads to the values of unknown functions at collocation points.

Journal: :Applied Mathematics and Computation 2009
Md. Shafiqul Islam M. Alamgir Hossain

In this paper, double integrals over an arbitrary quadrilateral are evaluated exploiting finite element method. The physical region is transformed into a standard quadrilateral finite element using the basis functions in local space. Then the standard quadrilateral is subdivided into two triangles, and each triangle is further discretized into 4 n right isosceles triangles, with area 1 2n2, and...

2010
S. E. Mousavi N. Sukumar

New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadra...

2008
Marco Vianello

The Padua points are the first known example of optimal points for total degree polynomial interpolation in two variables, with a Lebesgue constant increasing like log of the degree; cf. [1, 2, 3]. Moreover, they generate a nontensorial Clenshaw-Curtis-like cubature formula, which turns out to be competitive with the tensorial Gauss-Legendre formula and even with the few known minimal formulas ...

Journal: :J. Computational Applied Mathematics 2011
David Elliott Peter R. Johnston Barbara M. Johnston

Error estimates are a very important aspect of numerical integration. It is desirable to know what level of truncation error might be expected for a given number of integration points. Here, we determine estimates for the truncation error when Gauss-Legendre quadrature is applied to the numerical evaluation of two dimensional integrals which arise in the boundary element method. Two examples ar...

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید