نتایج جستجو برای: in2o3
تعداد نتایج: 695 فیلتر نتایج به سال:
To account for the explanation of an eventual sensing and catalytic behavior of rhombohedral In2O3 (rh-In2O3) and the dependence of the metastability of the latter on gas atmospheres, in situ electrochemical impedance spectroscopic (EIS), Fourier-transform infrared spectroscopic (FT-IR), in situ X-ray diffraction and in situ thermogravimetric analyses in inert (helium) and reactive gases (hydro...
The precursors of SnO2 or In2O3/SnO2 nanocrystlline powders have been prepared by the sol-precipitation method. The precursors were calcined at different temperatures to prepare SnO2 or In2O3/SnO2 nanocrystalline powders with different particle sizes. The nanocrystallites were examined by differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). An...
In2O3 quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In2O3-sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In2O3 could be i...
In2O3 nanowires that are 10-50 nm in diameter and several hundred nanometers to micrometers in length have been synthesized by simply annealing Cu-In compound at a relatively low temperature of 550°C. The catalysis of Cu on the growth of In2O3 nanowires is investigated. It is believed that the growth of In2O3 nanowires is via a solid-liquid-solid (SLS) mechanism. Moreover, photoluminescence (PL...
(La,Sr)MnO3 (LSMO) nanolayers with various crystallographic textures were grown on the sapphire substrate with and without In2O3 epitaxial buffering. The LSMO nanolayer with In2O3 epitaxial buffering has a (110) preferred orientation. However, the nanolayer without buffering shows a highly (100)-oriented texture. Detailed microstructure analyses show that the LSMO nanolayer with In2O3 epitaxial...
A polyaniline/In2O3 nanofiber composite based layered surface acoustic wave (SAW) sensor has been developed and investigated towards different gases. Chemical oxidative polymerization of aniline in the presence of finely divided In2O3 was employed to synthesize a polyaniline nanofiber/In2O3 nanoparticle composite. The nanocomposite was deposited onto a layered ZnO/64° YX LiNbO3 SAW transducer. ...
Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets i...
Co-synthesis of In2O3 and ZnO nanowires (NWs) were grown on silicon and alumina substrates using vapour transport deposition method. Their morphological structures showed that the NWs were rather aligned on silicon substrate and randomly oriented on alumina substrate. The formation of NWs on silicon substrate was found to be dominated by the growth of ZnO NWs while that on alumina substrate was...
Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In...
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconduc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید